Измерение называется прямым, если измеряемая величина сравнивается с мерой непосредственно или при измерительных приборов, градуированных в тех единицах, в которых измеряется данная величина. Измерения длины стола с масштабной линейки или измерения силы тока амперметром являются прямыми.
Измерение называется косвенным^ если непосредственно измеряется не сама величина, а другие величины, связанные с нею функционально. Числовое значение величины, подлежащей измерению, при косвенном измерении получается путем соответствующих расчетов на основании зависимостей, существующих между величинами и выраженных в математической форме. Косвенные измерения применяются в том случае, когда прямые измерения затруднительны или невозможны. Например, для определения плотности вещества производят прямые измерения массы и объема тела. Результаты этих прямых измерений используют для вычисления плотности с известного соотношения между массой тела, его объемом и плотностью вещества, из которого состоит тело. Выполненное таким измерение плотности есть косвенное измерение.
Лайк за ответ
Объяснение:
Задача №4
Дано:
x = 0,04·cos(3π·t+π/2)
ν - ?
A - ?
V₀ - ?
a₀ - ?
Циклическая частота:
ω = 2π·ν (1)
Но из уравнения колебаний
ω = 3π (2)
Приравняем (1) и (2)
2π·ν = 3π
ν = 3π / (2π) = 1,5 Гц
A = 0,04 м
V₀ = A·ω = 0,04·3π ≈ 0,38 м/с
a₀ = A·ω² = 0,04·9π² ≈ 3,55 м/с²
Задача 5
Дано:
A = 20 см = 0,20 м
φ₀ = π/2
t = 1 мин = 60 c
n = 120
x(t) - ?
T = t/n = 60/120 = 0,5 с
ω = 2π/T = 4π рад/с
Записываем уравнение колебаний:
x(t) = A·cos(ω·t+φ₀)
x(t) = 0,20·cos(4π·t+π/2)
Задача 6
Дано:
V = 0,9·cos(2π·t+π/6)
ν - ?
ω = 2π
Но
ω = 2π·ν
ν = ω / 2π = 2π/2π = 1 Гц
Задача 7
t = 5 мин = 300 c
n = 300
L - ?
Период
T = t/n = 300/300 = 1 с
Но
T = 2π√ (L/g)
T² = 4π²·L / g
L = g·T² / (4·π²) = 10·1² / (4·3,14)² ≈ 0,25 м
Задача 8
Δt
n₁ = 30
n₂ = 20
L₁ = 80 см
L₂ - ?
T₁ = Δt/n₁
T₂ = Δt/n₂
T₂/T₁ = n₁ / n₂ = 30/20 = 1,5
Но
T₁ = 2π·√(L₁/g)
T₂= 2π·√(L₂/g)
T₂/T₁ = √ (L₂/L₁)
√ (L₂/L₁) = 1,5
L₂/L₁ = 1,5²
L₂ = L₁·2,25
L₂ = 80·2,25 = 180 см
Для определения положения центра тяжести фигур и тел сложной геометрической формы их мысленно разбивают на такие части простейшей формы (если, конечно, это возможно), для которых положения центров тяжести известны. Затем определяют положение центра тяжести всей фигуры или тела по формулам , понимая в этих формулах под Определение положения центра тяжести фигур и тел сложной формы и Определение положения центра тяжести фигур и тел сложной формы объемы, площади и длины частей, на которые разбито данное тело, фигура или линия, а под Определение положения центра тяжести фигур и тел сложной формы и Определение положения центра тяжести фигур и тел сложной формы — координаты центров тяжести этих частей
Объяснение: