Площадь усиления каскада равна
П = Кср· fгр.в ,
П = 100 · 14· 103 = 1400· 103.
Рассчитаем данные широкополосного каскада с
низкочастотной корректирующей цепочкой RфСф, работающего на высокоомную нагрузку (Rг >R<Rн) и имеющего R = 1000 Ом, RН=106 Ом, допустимое падение
напряжения на Rф, равное Uф=6 В, и постоянную составляющую тока выходной цепи Iо=3 мА. Относительное усиление каскада Ун на низшей частоте fн = 20 Гц.Определим Rф и необходимый коэффициент низкочастотной коррекции b:
Rф = Uф / Iо ,
Rф = 6 /3 10-3 = 2000 Ом,
b = R / Rф ,
b = 1000 /2000 = 0,5
Если каскад предназначен для усиления гармонических сигналов, то
воспользуемся при его расчете семейством нормированных частотных характеристик для b = 0,5, приведенных на рисунок 1.81,а. Для того чтобы получить наилучшую результирующую характеристику, выберем на этом семействе характеристику с максимальным подъёмом в 1,2—1,5 раза больше заданного; такая характеристика соответствует m=0,9. По этой характеристике определим, что Yн=1,12 имеет место при Х=2,1, откуда найдем необходимые значения С и Сф:
С = Х / 6,28· f· Rн ,
С = 2,1 / 6,28 ·20· 106 = 0,0167·10-6 Ф = 0,0167 мкФ≈0,02 мкФ;
Сф = m·С·Rн / R = m ·Х / 6,28· fн ·R ,
Сф = 0,9· 2,1 / 6,28· 20· 1000 = 0,015 ·10-3 = 15 мкФ
q= 4*10-8 Кл каждый.
Найдите напряженность поля в четвертой вершине.
___
напряженность поля в четвертой вершине
от заряда расположенного на расстоянии диагонали
E1= q/(4*pi*e0*(a*sqrt(2))^2)= (q/(4*pi*e0*a^2))*(1/2)
от зарядов расположенных через сторону
E2= q/(4*pi*e0*a^2)
Если нарисовать (или представить себе) как направлены векторы напряженности,
то понятно, что суммарная напряженность
E= E1+ sqrt(2)*E2= (q/(4*pi*e0*a^2))*((1/2)+ sqrt(2))
E= (4e-8/(4*pi*8.854e-12*0.25^2))*((1/2)+ sqrt(2))
ответ
E= 11011 (В/м)
Подробнее - на -