Тело падает без начальной скорости. Вторую половину пути оно проходит на 1,5 с быстрее, чем первую. Сколько времени и с какой высоты падало тело?
Обозначим время падения на втором участке t,тогда время падения на первом t+1,5.
Из равенства участков получим
0.5g*(t+1,5)^2=g*(t+1,5)*t+0.5g*t^2 (g*(t+1,5)=V(0)-начальная скорость на втором участке)
0.5t^2+1,5t+0,5*2,25=t^2+1,5t+0,5t^2
1,125=t^2
t=1.06 sek
Общее время падения T=t+t+1.5=1.06+1.06+1.5=3.62 sek
Высота H=0.5gT^2=0.5*10*3,62^2=65,52 m
Для проверки H(1)=0.5g*T(1)^2=0.5*10*2.56^2=32,76 m=0.5 H
Т (1)=1.06+1.5=2.56сек
Как -то так.
Удачи.
Выразим V из закона Менделеева-Клапейрона:
P V = m R T / M => V = m R T / P M.
А теперь приравняем V1 к V2. И дабы не писать лишнего, сразу посмотрим, что у нас сократится: M, R, m (но сначала я напишу с m для ясности). Получаем:
m T1 / P1 = 0,4 m T2 / P2.
У тебя сейчас, наверное, возник вопрос: почему во второй части уравнения перед m стоит 0,4?
- Потому что исходя из условия задачи мы можем сделать вывод, что m2 = 0,4 m1 (в уравнении m1 заменена на просто m для краткости).
Теперь сокращаем массы, выводим P2:
P2 = 0,4 T2 P1 / T1 = 4*10^-1 * 273 * 2*10^5 / 3*10^2 = 72,8*10^3 Па