Чему равна амплитуда силы тока в цепи переменного тока частотой 50 Гц, содержащей последовательно соединенные активное сопротивление 1 кОм и конденсатор емкости С = 1 мкФ, если действующее значение напряжения сети, к которой подключен участок цепи, равно 220 В?
Решение
Запишем закон Ома для цепи переменного тока:
I
=
U
Z
Z – полное сопротивление цепи, которое складывается из активного и реактивного сопротивлений.
Z
=
√
R
2
+
X
c
2
X
c
=
1
2
π
ϑ
C
Найдем полное сопротивление, подставив в формулу данные из условия:
X
=
1
2
⋅
3
.
14
⋅
50
⋅
1
⋅
10
−
6
=
3
,
18
к
О
м
Z
=
√
1
2
⋅
10
6
+
(
3
,
2
)
2
⋅
10
6
=
3
,
3
к
О
м
Далее по действующему значению напряжения найдем амплитудное:
U
A
=
U
д
⋅
√
2
=
220
⋅
√
2
=
311
В
Теперь подставим апмлитудное значение напряжения в выражение для закона Ома и вычислим силу тока:
Для начала приведем скорости к системе СИ V=54 км/ч=54000 м/3600c=15м/с U=72 км/ч=72000 м/3600c=20м/с
квадрат расстояния между автомобилями вычисляем по формуле Пифагора d²=(L-Vt)²+(L-Ut)² найдем производную от d² (d²)'=2(L-Vt)(-V)+2(L-Ut)(-U) минимальное d² (и соответственно минимальное d) будет в момент времени t, когда (d²)'=0 2(L-Vt)(-V)+2(L-Ut)(-U)=0 V(L-Vt)+U(L-Ut)=0 VL-V²t+UL-U²t=0 L(V+U)=t(V²+U²) t=450м *(15 м/c+20 м/c)/(15² м²/с²+20² м²/с²)=450 м/(225+400)м/с=25,2с
подставляем это значение t в формулу для d² d²=(450м-15м/с * 25,2с)²+(450м-20м/с * 25,2с)²=8100 м² d=90,0м
Объяснение:
Чему равна амплитуда силы тока в цепи переменного тока частотой 50 Гц, содержащей последовательно соединенные активное сопротивление 1 кОм и конденсатор емкости С = 1 мкФ, если действующее значение напряжения сети, к которой подключен участок цепи, равно 220 В?
Решение
Запишем закон Ома для цепи переменного тока:
I
=
U
Z
Z – полное сопротивление цепи, которое складывается из активного и реактивного сопротивлений.
Z
=
√
R
2
+
X
c
2
X
c
=
1
2
π
ϑ
C
Найдем полное сопротивление, подставив в формулу данные из условия:
X
=
1
2
⋅
3
.
14
⋅
50
⋅
1
⋅
10
−
6
=
3
,
18
к
О
м
Z
=
√
1
2
⋅
10
6
+
(
3
,
2
)
2
⋅
10
6
=
3
,
3
к
О
м
Далее по действующему значению напряжения найдем амплитудное:
U
A
=
U
д
⋅
√
2
=
220
⋅
√
2
=
311
В
Теперь подставим апмлитудное значение напряжения в выражение для закона Ома и вычислим силу тока:
I
A
=
U
A
Z
=
311
3
,
3
⋅
10
3
=
0
,
09
А
ответ: 0,09 А.