Для этого необходимо знать: Удельная теплоемкость льда с (2060*10^3 Дж/кг*град C) Удельную теплоту плавления льда л (лямбда) (335*10^3 Дж/кг) Удельную теплоемкость воды: с (4200*10^3 Дж/кг*град С)
Решение: Лед нагреется до 0 градусов, затем растает. Поэтому: Q = c(льда)*m*10 + л*m - все это за 360 секунд.
До температуры кипения: Q = c(воды)*m*100 - это все за х секунд.
Получается:
Преобразуем и найдем х: [tex]x= \frac{36000*c*m}{m(10c+l)} [tex]x= \frac{36000*4200*10^{3} }{10*2060*10^{3} } = 7222 секунд = 120 минут.
Поправьте, если ответ не такой. А то 2 часа - многовато как-то. :)
Обозначим время движения мотоциклиста туда и обратно как t₁ и t₂,
длину колонны S = 2 км,
скорость колонны v₀ = 5 км/ч,
скорость мотоциклиста v км/ч.
По условию t₁ + t₂ = 1/6 ч.
Очевидно, что скорость движения мотоциклиста относительно колонны по направлению движения колонны v' = v - v₀, в обратном направлении v'' = v + v₀.
Так как длина колонны остается постоянной, то мотоциклист проехал 2 км со скоростью v' и 2 км обратно со скоростью v''.
Тогда:
t₁ + t₂ = S/(v - v₀) + S/(v + v₀)
t₁ + t₂ = (S(v + v₀) + S(v - v₀)) : (v² - v₀²)
1/6 = (2v + 10 + 2v - 10) : (v² - 25)
(v² - 25) : 4v = 6
v² - 24v - 25 = 0 D = b²-4ac = 576+100 = 676 = 26²
v₁ = (-b-√D)/2a = -1 - не удовлетворяет условию
v₂ = (-b+√D)/2a = 25 (км/ч)
ответ: 25 км/ч.