Решение. При движении лифта с постоянным ускорением a сила натяжения нити маятника T в положении его равновесия относительно кабины лифта определяется из второго закона Ньютона: ma = mg − T, откуда T = m(g − a). В последней формуле a − величина алгебраическая: положительная, когда ускорение лифта направлено вниз, и отрицательная, когда ускорение направлено вверх. Отсюда следует, что при отклонении маятника сила, возвращающая его к положению равновесия, будет пропорциональна не g, а (g − a). Это означает, что в лифте, движущемся с ускорением a, маятник длиной l имеет период T1 = 2π√{l/(g − a)}.По условию задачи Т1 = 15/10 = 1,5 с. Взяв отношение периодов колебаний маятника в лифте, движущемся с ускорением, и в неподвижном лифте и возведя в квадрат, получим (T1/T)2 = g/(g − a), откуда находим ответ: a = g × {1 − (T/T1)²} = 9,8*(1-(1/1,5)²) =9,8*(1- 0.444444) =9,8* 0.555556 = 5.444444 м/с². ответ положительный, значит, лифт движется с ускорением, направленным вниз; направление скорости роли не играет.
#1 Формула силы тяжести: F = mg, где m - масса, g - ускорение свободного падения, равное 10 м/c². у нас неизвестна масса, но мы можем легко ее найти, потому что у нас известен объем и плотность гранита тоже легко можно найти: m = pV, где V - объем, p - плотность (плотность гранита 2600 кг/м³) F = pVg = 2600 кг/м³ * 1м³ * 10 м/c² = 26000 (кг*м)/c² = 26000 Н = 26 кН ответ: 26кН
#2 Дано: M=0.2 m=100 кг Найти: F Решение: x: F- Fтр=0 y: N-mg=0 F=Fтр N=mg N=100 кг * 10 м/с² = 1000 Н Fтр= M*N F=0.2*1000 Н = 200 Н
При движении лифта с постоянным ускорением a сила натяжения нити маятника T в положении его равновесия относительно кабины лифта определяется из второго закона Ньютона:
ma = mg − T,
откуда
T = m(g − a).
В последней формуле a − величина алгебраическая: положительная, когда ускорение лифта направлено вниз, и отрицательная, когда ускорение направлено вверх.
Отсюда следует, что при отклонении маятника сила, возвращающая его к положению равновесия, будет пропорциональна не g, а (g − a). Это означает, что в лифте, движущемся с ускорением a, маятник длиной l имеет период
T1 = 2π√{l/(g − a)}.По условию задачи Т1 = 15/10 = 1,5 с.
Взяв отношение периодов колебаний маятника в лифте, движущемся с ускорением, и в неподвижном лифте и возведя в квадрат, получим
(T1/T)2 = g/(g − a),
откуда находим ответ:
a = g × {1 − (T/T1)²} = 9,8*(1-(1/1,5)²) =9,8*(1- 0.444444) =9,8* 0.555556 = 5.444444 м/с².
ответ положительный, значит, лифт движется с ускорением, направленным вниз; направление скорости роли не играет.