Против течения моторная лодка плывет медленнее чем в стоячей воде зато по течению быстрее. где удастся скорее проплыть одно и то же расстояние туда и обратно в реке или в озере
Если принять что моторная лодка плывет соскоростью V, а скорость течения реки U (причем скорость лодки больше скорости реки V>U или V/U > 1, так как если скорость реки больше или равна вернуться в исходную точку назад против течения не возможно). Примем что расстояние из одной точки в другую равно S Тогда вреня затраченное на путь туда и обратно в озере равно t1 = S/V+S/V= 2S/V Время затраченное на путь туда и обратно в реке равно t2 =S/(V-U) +S(V+U) = S*((V+U+V-U)/(V+U)(V-U)) =S*2V/(V^2-U^2)= = (2S/V)*(V^2/(V^2-U^2) = t1*(1/(1-(U/V)^2) Посмотрим на знаменатель дроби он равен 1-(U/V)^2 Величина 0< U/V <1 так как по условию V/U > 1 Следовательно 0< (U/V)^2 <1. Поэтому 0< 1-(U/V)^2 < 1. Следовательно 1/(1-(U/V)^2 >1 Поэтому t2 = t1*(1/(1-(U/V)^2) > t1 (доказано)
ответ: быстрее проплыть одно и тоже расстояние туда и обратно в озере.
1850 Дж / (кг*К)
Объяснение:
1)
Для гелия:
ν₁ = m₁ / M₁
Отсюда
m₁ = ν₁*M₁ = 2*4*10⁻³ = 8*10⁻³ кг
Для кислорода:
ν₂ = m₂ / M₂
Отсюда
m₂ = ν₂*M₂ = 3*16*10⁻³ = 48*10⁻³ кг
Суммарная масса смеси:
m = m₁ + m₂ = (8+48)*10⁻³ = 56*10⁻³ кг
2)
Находим массовые доли газов:
ω₁ = m₁ / m = 8*10⁻³ / 56*10⁻³ ≈ 0,14
ω₂ = m₂ / m = 48*10⁻³ / 56*10⁻³ ≈ 0,86
3)
Удельная теплоемкость гелия (число степеней свободы двухатомного газа i = 3)
cp₁ = ((i+2)/2)*R/M = ((3+2)/2)*8,31 / 4*10⁻³ ≈ 5 200 Дж / (кг*К)
Для кислорода:
cp₂ = ((i+2)/2)*R/M = ((3+2)/2)*8,31 / 16*10⁻³ ≈ 1 300 Дж / (кг*К)
4)
Для смеси:
cp = cp₁*ω₁ + cp₂*ω₂ = 5200*0,14 + 1300*0,86 ≈ 1 850 Дж/(кг*К)