Калориметр містить лід масою 100 г. за температури -10°С. У калориметр вносять мідну кульку масою 500 г. Визначте температури цієї кульки, якщо після встановлення теплової рівноваги виявилося, що 25 г. льоду перетворилося на воду. Питомі теплоємності льоду та міді 2,1 кДж/кг•°К і 0,4 кДж/кг•°К відповідно, питома теплота плавлення льоду 330 кДж/кг. (Скорочений запис на фото.) [ ів.]
Предположение: Пуля не деформируется. Для начала введем систему отсчета: пусть начало координат лежит в месте вхождения пули в вал, а пуля движется вдоль оси X (в положительном направлении). Координату пули отметим функцией x(t). Начнем наблюдение в момент касания пулей вала. Тогда x(0) = 0. Под начальной скоростью пули понимаем скорость пули относительно начала отсчета в момент времени t=0, то есть .
По аналогии с жидкостями, можно рассматривать вискозность земли, тогда сила, действующая на пулю (замедляющая сила) пропорциональна скорости пули с фактором b: Земля проявляет вискозность только при достаточной скорости пули, допустим при . Пренебрегая силой тяжести, а значит и движением пули по вертикали, запишем второй закон Ньютона: Пусть . Тогда дифференциальное уравнение имеет вид Решением является линейная комбинация функций:
То есть Тогда Так как , . Тогда Соответственно, в любой момент времени координата пули прямо пропорциональна начальной скорости, то есть удвоение начальной скорости приведет к удвоению пройденного расстояния. Найдем это расстояние: Пусть момент, когда движение пули перестанет следовать законом жидкостей, означает для нас остановку пули. Тогда пуля движется до тех пор, пока , то есть Тогда Соответственно При удвоении начальной скорости, конечная координата равна: Тогда отношение нового пути к старому равно , При, допустим, , это отношение равно .
Предположение: Пуля не деформируется. Для начала введем систему отсчета: пусть начало координат лежит в месте вхождения пули в вал, а пуля движется вдоль оси X (в положительном направлении). Координату пули отметим функцией x(t). Начнем наблюдение в момент касания пулей вала. Тогда x(0) = 0. Под начальной скоростью пули понимаем скорость пули относительно начала отсчета в момент времени t=0, то есть .
По аналогии с жидкостями, можно рассматривать вискозность земли, тогда сила, действующая на пулю (замедляющая сила) пропорциональна скорости пули с фактором b: Земля проявляет вискозность только при достаточной скорости пули, допустим при . Пренебрегая силой тяжести, а значит и движением пули по вертикали, запишем второй закон Ньютона: Пусть . Тогда дифференциальное уравнение имеет вид Решением является линейная комбинация функций:
То есть Тогда Так как , . Тогда Соответственно, в любой момент времени координата пули прямо пропорциональна начальной скорости, то есть удвоение начальной скорости приведет к удвоению пройденного расстояния. Найдем это расстояние: Пусть момент, когда движение пули перестанет следовать законом жидкостей, означает для нас остановку пули. Тогда пуля движется до тех пор, пока , то есть Тогда Соответственно При удвоении начальной скорости, конечная координата равна: Тогда отношение нового пути к старому равно , При, допустим, , это отношение равно .
Пуля не деформируется.
Для начала введем систему отсчета: пусть начало координат лежит в месте вхождения пули в вал, а пуля движется вдоль оси X (в положительном направлении). Координату пули отметим функцией x(t). Начнем наблюдение в момент касания пулей вала. Тогда x(0) = 0. Под начальной скоростью пули понимаем скорость пули относительно начала отсчета в момент времени t=0, то есть
По аналогии с жидкостями, можно рассматривать вискозность земли, тогда сила, действующая на пулю (замедляющая сила) пропорциональна скорости пули с фактором b:
Земля проявляет вискозность только при достаточной скорости пули, допустим при
Пренебрегая силой тяжести, а значит и движением пули по вертикали, запишем второй закон Ньютона:
Пусть
Решением является линейная комбинация функций:
То есть
Тогда
Так как
Тогда
Соответственно, в любой момент времени координата пули прямо пропорциональна начальной скорости, то есть удвоение начальной скорости приведет к удвоению пройденного расстояния.
Найдем это расстояние:
Пусть момент, когда движение пули перестанет следовать законом жидкостей, означает для нас остановку пули. Тогда пуля движется до тех пор, пока
Тогда
Соответственно
При удвоении начальной скорости, конечная координата равна:
Тогда отношение нового пути к старому равно
При, допустим,