дано:m1=2 кг m2=4 кг F2/F1 - ? Решение Сила тяжести находится по формуле mg, где g - примерно 10 Н/кг. Так получаем: F1=m1g=20Н F2=m2g=40Н F2/F1=40/20=2, т.е. в 2 раза
Сила тяжести: F=mg,где m масса,g ускорение свободного падения равная 9.81 или 10 м/с если коэффициенты за равенством растут,то и сила тяжести растет.Масса второго больше на два,значит и сила больше на два
Я распишу подробно, формулами, в конце выйдем на ответ: длину нужно уменьшить в 4 раза. Мы знаем формулу периода математического маятника: T=2\pi*\sqrt\frac{l}{g};\\ Запишем ее для двух случаев, по условию, что T2=T1/2. T1=2\pi*\sqrt\frac{l1}{g};\\ \frac{T1}{2}=2\pi*\sqrt\frac{l2}{g};\\ Поделим первое уравнение на второе: \frac{T1}{\frac{T1}{2}}=\frac{2\pi*\sqrt\frac{l1}{g}}{2\pi*\sqrt\frac{l2}{g}};\\ 2={\sqrt{\frac{l1}{g}*{\frac{g}{l2};\\ Возводим и правую и левую часть в квадрат: 4=\frac{l1}{g}*\frac{g}{l2};\\ 4=\frac{l1}{l2};\\ 4l2=l1;\\ l2=\frac{l1}{4};\\ То есть, о чем я и говорил изначально, при умешьнении периода колебаний в 2 раза, длину маятника уменьшают в 4 раза.
Я распишу подробно, формулами, в конце выйдем на ответ: длину нужно уменьшить в 4 раза. Мы знаем формулу периода математического маятника: T=2\pi*\sqrt\frac{l}{g};\\ Запишем ее для двух случаев, по условию, что T2=T1/2. T1=2\pi*\sqrt\frac{l1}{g};\\ \frac{T1}{2}=2\pi*\sqrt\frac{l2}{g};\\ Поделим первое уравнение на второе: \frac{T1}{\frac{T1}{2}}=\frac{2\pi*\sqrt\frac{l1}{g}}{2\pi*\sqrt\frac{l2}{g}};\\ 2={\sqrt{\frac{l1}{g}*{\frac{g}{l2};\\ Возводим и правую и левую часть в квадрат: 4=\frac{l1}{g}*\frac{g}{l2};\\ 4=\frac{l1}{l2};\\ 4l2=l1;\\ l2=\frac{l1}{4};\\ То есть, о чем я и говорил изначально, при умешьнении периода колебаний в 2 раза, длину маятника уменьшают в 4 раза.
m2=4 кг
F2/F1 - ?
Решение
Сила тяжести находится по формуле mg, где g - примерно 10 Н/кг.
Так получаем:
F1=m1g=20Н
F2=m2g=40Н
F2/F1=40/20=2, т.е. в 2 раза