C высоты 200 м тело брошено вертикально вверх с начальной скоростью 30 м/с — Через какое время тело упадет на Землю (сопротивление воздуха не учитывается, g = 10. )? A) 13 с В) 3 с C) 7 с D) 10 с E) 17 с
Подобная задача уже была. Мы знаем, что на поверхности Земли F=g·m, где g = 9.8 Н/кг с другой стороны, согласно Закону Всемирного тяготения F=G·m·M/R², где G=6.67e(-11) гравитационная постоянная М – масса Земли Значит g= G·M/R² Отсюда G·M=g·R² Когда спутник на геостационарной орбите его период вращения равен суткам T=86400 c орбитальная скорость v=2·pi·r/T определив r из условий равенства центростремительного ускорения и ускорения свободного падения спутника на геостационарной орбите v²/r=G·M/r² v²/r=g·R²/r² v²=g·R²/r r=g·R²/v² подставив в выше выведенную орбитальную скорость v=2·pi·g·R²/(v²·T) окончательно v=(2·pi·g·R²/T)^(1/3) v=(2·3.14·9.8·6400000²/86400)^(1/3) v=3079 м/с
Подобная задача уже была. Мы знаем, что на поверхности Земли F=g·m, где g = 9.8 Н/кг с другой стороны, согласно Закону Всемирного тяготения F=G·m·M/R², где G=6.67e(-11) гравитационная постоянная М – масса Земли Значит g= G·M/R² Отсюда G·M=g·R² Когда спутник на геостационарной орбите его период вращения равен суткам T=86400 c орбитальная скорость v=2·pi·r/T определив r из условий равенства центростремительного ускорения и ускорения свободного падения спутника на геостационарной орбите v²/r=G·M/r² v²/r=g·R²/r² v²=g·R²/r r=g·R²/v² подставив в выше выведенную орбитальную скорость v=2·pi·g·R²/(v²·T) окончательно v=(2·pi·g·R²/T)^(1/3) v=(2·3.14·9.8·6400000²/86400)^(1/3) v=3079 м/с
ответ: 10,6с
Объяснение: Высота подъема тела равна:
h=(Vн²-V²)/g=30²/10=90м
Время подъема тела равно:
t1=Vн/g=30/10=3c
Высота падения тела равна: 200+90=290м.
Время падения тела с высоты 290м
t2=√2h/g=√2*290/10=√58=7,6с
Общее время через которое упадет тело равно:
t=t1+t2=3+7,6=10,6с