Пусть v - искомая скорость пули, m - её масса. Кинетическая энергия пули E=m*v²/2 Дж. По условию, при ударе пули о перегородку выделяется количество теплоты Q=0,488*E=0,244*m*v² Дж. Для того, чтобы расплавить пулю, её надо сначала нагреть до температуры плавления. Для этого требуется количество теплоты Q1=120*m*(603-303)=36000*m Дж. Затем пуля начинает плавиться, на её расплавление необходимо количество теплоты Q2=25000*m Дж. Таким образом, для расплавления пуля должна иметь минимальную скорость, определяемую условием Q=Q1+Q2. Отсюда следует уравнение 0,244*m*v²=36000*m+25000*m, или 0,244*v²=61000. Отсюда v²=61000/0,244=250000 м²/с² и v=√250000=500 м/с. ответ: при скорости 500 м/с.
Итак, что у нас происходит. Кусок льда, оказавшись в воде, сначала нагревается до температуры плавления, затем тает. При этом вода в сосуде охлаждается. Коль лед не весь растаял, есть основания полагать, что процесс завершился при температуре 0° С. Тогда вода в сосуде, при охлаждении отдает количество теплоты Q₁: (1) Тут: с₁ - удельная теплоемкость воды 4200 Дж/(кг·К) m₁ - масса воды 1 кг (1л - 1кг) T₀ - начальная температура воды 10°С T₁ - конечная температура воды и льда 0°С
Лед принял количество теплоты Q₂ : (2) Где: с₂ - удельная теплоемкость льда 2060 Дж/(кг·К) m₂ - начальная масса льда T₂ - начальная температура льда -20°С T₁ - конечная температура воды и льда 0°С m₃ - масса растаявшего льда. λ - удельная теплота плавления льда 334*10³ Дж/кг При этом: кг (3)
Составляем уравнение теплового баланса, приравниваем Q₁ и Q₂. При этом, согласно (3) выражаем m₃ через m₂ (4) Теперь из 4 выражаем m₂: