Схема состоит из:
группы сопротивлений R₂ и R₂', соединенных последовательно,
сопротивления R₃, соединенного параллельно с первой группой,
сопротивления R₁, соединенного последовательно с первыми двумя группами.
Преобразовать схему можно так: (см. рис.1)
Тогда общее сопротивление R₂ и R₂':
R₂₂ = R₂ + R₂' = 20 + 20 = 40 (Ом)
То есть сопротивления R₂ и R₂' можно заменить одним сопротивлением R₂₂ = 40 (Ом) (см. рис.2)
Общее сопротивление R₂₂ и R₃:
R₂₂₃ = R₂₂•R₃ : (R₂₂+R₃) = 40•60 : 100 = 24 (Ом)
Общее сопротивление цепи с учетом R₁:
R = R₁ + R₂₂₃ = 6 + 24 = 30 (Ом)
Общий ток в цепи:
I = I₁ = U/R = 240 : 30 = 8 (A)
Напряжение на первом сопротивлении:
U₁ = I · R₁ = 8 · 6 = 48 (B)
Напряжение на группе сопротивлений R₂₂₃:
U₂₂₃ = U - U₁ = 240 - 48 = 192 (B)
Ток, протекающий через R₃:
I₃ = U₂₂₃ : R₃ = 192 : 60 = 3,2 (A)
Ток, протекающий через R₂₂:
I₂₂ = U₂₂₃ : R₂₂ = 192 : 40 = 4,8 (A)
Напряжение на R₂ и R₂':
U₂ = U₂' = R₂I₂₂ = R₂'I₂₂ = 20 · 4,8 = 96 (B)
mg + N1 + N2 + Fmp = 0,
поэтому суммы проекций всех сил на оси ОХ и OY равны нулю:
N1 − Fmp = 0,
N2 − mg = 0,
или
N1 − μN2 = 0, (1)
N2 − mg = 0. (2)
Пусть l − длина лестницы. На основании равенства нулю суммы моментов всех сил относительно оси, проходящей через точку В, составим уравнение:
N1lsinα − mg(cosα)l/2 = 0.
Отсюда
tgα = mg/(2N1). (3)
Выразив из уравнения (2)
N2 = mg
и подставив это значение в уравнение (1), найдем
N1 = μmg.
Подставив это выражение в формулу (3), получим:
a = arctg(1/(2μ) (μ=0,5)
Тут, в углах, я не сильна По таблице посмотри arctg угла.