Внешняя металлическая оболочка в наших условиях роли не играет.
Остается диэлектрический шар, единственный момент во всех подобного рода задачах потенциал принимают равным нулю на бесконечности, а тут он ноль в центре шара.
Напряженность поля внутри шара меняется по закону
Е = k/e * p*V / r^2 = 4*k*p*π*r/(3*e) = p*r/(3*e*e0)
Потенциал работе поля по переносу единичного заряда из нулевого потенциала ( центра шара ) в искомую точку
φ = ∫(0;r2) p*r*dr/(3*e*e0) = p*r2^2/(6*e*e0) = 9*10^(-5)*0,02^2/(6*2*8,854*10^(-12))=~339 В
Среднюю скорость катера можно сосчитать по формуле:
\[{\upsilon _{ср}} = \frac{{{S_1} + {S_2}}}{{{t_1} + {t_2}}}\]
Движение на обоих участках было равномерным, поэтому найти время \(t_1\) и \(t_2\) не составит труда.
\[\left\{ \begin{gathered}
{t_1} = \frac{{{S_1}}}{{{\upsilon _1}}} \hfill \\
{t_2} = \frac{{{S_2}}}{{{\upsilon _2}}} \hfill \\
\end{gathered} \right.\]
Так как участки равны по величине \(S_1=S_2=\frac{1}{2}S\), и скорость на первой участке больше скорости на втором в два раза \(\upsilon_1=2\upsilon_2\), то:
\[\left\{ \begin{gathered}
{t_1} = \frac{S}{{2{\upsilon _1}}} = \frac{S}{{4{\upsilon _2}}} \hfill \\
{t_2} = \frac{S}{{2{\upsilon _2}}} \hfill \\
\end{gathered} \right.\]
Подставим выражения для времен \(t_1\) и \(t_2\) в формулу средней скорости.
\[{\upsilon _{ср}} = \frac{S}{{\frac{S}{{4{\upsilon _2}}} + \frac{S}{{2{\upsilon _2 = \frac{S}{{\frac{{3S}}{{4{\upsilon _2 = \frac{{S \cdot 4{\upsilon _2}}}{{3S}} = \frac{{4{\upsilon _2}}}{3}\]
Значит необходимая нам скорость \(\upsilon_2\) определяется по такой формуле.