При скатывании диска массой m с с высоты h его потенциальная энергия mgh преобразовывается в кинетическую энергию поступательного и вращательного движения: mgh=mv^2/2+Jw^2/2, где J - момент инерции диска. Длина наклонной плоскости l связана с её высотой h соотношением l=h/sin(a), линейная скорость v связана с угловой скоростью w соотношением v=wR, где R - радиус диска. Тогда mglsin(a)=v^2/2*(m+J/R^2). Так как движение тела происходит лишь под действием силы тяжести, то оно равноускоренное. Тогда v=at и l=at^2/2. Отсюда ускорение a=mgsin(a)/(m+J/R^2). Момент инерции диска J=mR^2/2. Тогда ускорение a=mgsin(a)/(3m/2)=2gsin(a)/3
При этом ударе (абсолютно неупругом) выполняется закон сохранение импульса. m1v1=(m1+m2)v2; Значит скорость сцепки после столкновения будет v2=m1v1/(m1+m2), а кинетическая энергия E=0.5(m1+m2)*((m1v1)/(m1+m2))^2; E=0.5(m1v1)^2 / (m1+m2); Сила трения равна F=U(m1+m2)g. Чтобы остановить сцепку, она должна совершить работу, равную кинетической энергии сцепки A=E. Так как работа равна силе, умноженной на перемещение A=FL, то путь до остановки сцепки равен L=E/F; (переведём скорость в м/с, разделив 12/3,6=3,(3) м/с) L=0.5(m1v1)^2 / (m1+m2)/(U(m1+m2)g); L=(0.5/Ug)*(m1v1)^2 /(m1+m2)^2; L=(0.5/(0.05*10))*(50000*3,33)^2 / (50000+30000)^2; L=2,3 м (округлённо).
Длина наклонной плоскости l связана с её высотой h соотношением l=h/sin(a), линейная скорость v связана с угловой скоростью w соотношением v=wR, где R - радиус диска.
Тогда mglsin(a)=v^2/2*(m+J/R^2). Так как движение тела происходит лишь под действием силы тяжести, то оно равноускоренное. Тогда v=at и l=at^2/2. Отсюда ускорение a=mgsin(a)/(m+J/R^2). Момент инерции диска J=mR^2/2. Тогда ускорение a=mgsin(a)/(3m/2)=2gsin(a)/3