63 мГн
Объяснение:
Дано:
Wэ = 0,5 мДж = 0,5*10⁻³ Дж
ν = 400 кГц = 4*10⁵ Гц
qmax = 50 нКл = 50*10⁻⁹ Кл
L - ?
Запишем формулу Томсона:
T = 2π*√ (L*C)
Возведем обе части в квадрат:
T² = 4*π²*L*C
Отсюда индуктивность катушки:
L = T² / (4*π²*C) (1)
Итак, нам надо знать период T и емкость конденсатора С.
1) Период колебаний:
T = 1 / υ = 1 / 4*10⁵ = 2,5*10⁻⁶ c
2)
Емкость конденсатора найдем из формулы:
Wэ = q² / (2*C)
C = q² / (2*Wэ) = (50*10⁻⁹)² / (2*0,5*10⁻³) = 2,5*10⁻¹² Ф
3)
Найденные величины подставляем в формулу (1)
L = T² / (4*π²*C) = (2,5*10⁻⁶ )² / (4*3,14²* 2,5*10⁻¹²) ≈ 0,063 Гн или 63 мГн
Объяснение:
Задача №4
Дано:
x = 0,04·cos(3π·t+π/2)
ν - ?
A - ?
V₀ - ?
a₀ - ?
Циклическая частота:
ω = 2π·ν (1)
Но из уравнения колебаний
ω = 3π (2)
Приравняем (1) и (2)
2π·ν = 3π
ν = 3π / (2π) = 1,5 Гц
A = 0,04 м
V₀ = A·ω = 0,04·3π ≈ 0,38 м/с
a₀ = A·ω² = 0,04·9π² ≈ 3,55 м/с²
Задача 5
Дано:
A = 20 см = 0,20 м
φ₀ = π/2
t = 1 мин = 60 c
n = 120
x(t) - ?
T = t/n = 60/120 = 0,5 с
ω = 2π/T = 4π рад/с
Записываем уравнение колебаний:
x(t) = A·cos(ω·t+φ₀)
x(t) = 0,20·cos(4π·t+π/2)
Задача 6
Дано:
V = 0,9·cos(2π·t+π/6)
ν - ?
ω = 2π
Но
ω = 2π·ν
ν = ω / 2π = 2π/2π = 1 Гц
Задача 7
t = 5 мин = 300 c
n = 300
L - ?
Период
T = t/n = 300/300 = 1 с
Но
T = 2π√ (L/g)
T² = 4π²·L / g
L = g·T² / (4·π²) = 10·1² / (4·3,14)² ≈ 0,25 м
Задача 8
Δt
n₁ = 30
n₂ = 20
L₁ = 80 см
L₂ - ?
T₁ = Δt/n₁
T₂ = Δt/n₂
T₂/T₁ = n₁ / n₂ = 30/20 = 1,5
Но
T₁ = 2π·√(L₁/g)
T₂= 2π·√(L₂/g)
T₂/T₁ = √ (L₂/L₁)
√ (L₂/L₁) = 1,5
L₂/L₁ = 1,5²
L₂ = L₁·2,25
L₂ = 80·2,25 = 180 см
ответ: 20; 30; 23,33м/с
Объяснение:
Дано:
S1=400м
t1=20c
S2=300м
V2=10c
V1-?; V2-?; Vср-?
V1=S1/t1=400/20=20м/с
V2=S2/t2=300/10=30м/с
Vср=(S1+S2)/(t1+t2)=(400+300)/(20+10)=23,33м/с