м.
Объяснение:
Дано:
км/ч
м/с - скорость автобуса на втором участке пути;
с - время, за которое автобус разогнался до скорости, равной 27 км/ч;
с - время движения автобуса с постоянной скоростью, равной 27 км/ч;
с - время торможения автобуса, то есть уменьшения скорости от 27 км/ч до 0.
Необходимо найти: .
Как видно из задачи, общий путь между остановками будет равен пути, потраченном на разгон, пути с постоянной скоростью и пути, с постоянным торможением. Разберем каждый участок пути отдельно.
Путь на первом участке, согласно формуле движения с постоянным ускорением будет иметь вид:
Время нам известно, неизвестно лишь ускорение
. Так как начальная скорость
м/с, то можем записать:
(1)
Ускорение в данном случае будет иметь вид:
, и если
, то получаем:
Подставляя в формулу (1) получим:
Можем сразу посчитать:
м. - пройдя расстояние автобус разгонится до скорости 27 км/ч или 7,5 м/с за 5 секунд.
Вторая часть пути, это путь с постоянной скоростью .
На данном участке пути, пройденное расстояние будет иметь вид:
м. - такое расстояние проедет автобус с постоянной скоростью.
Затем, автобус станет тормозить, то есть у нас равнозамедленное движение с постоянным отрицательным ускорением.
Пройденный путь на данном участке будет, согласно формуле равнозамедленного движения:
(2)
В данном случае, так как автобус в итоге затормозит и уменьшит свою скорость до нуля (), то ускорение можно найти согласно формуле:
Если м/с, то ускорение
будет равно:
(3)
Тогда подставляя формулу (3) в формулу (2) получим:
Все данные нам известны, подставляем и считаем:
м. - за такое расстояние автобус полностью остановится со скорости
м/с за время 8 с.
Теперь, чтобы найти весь путь, пройденный автобусом, сложим ,
и
:
м.
м.
Объяснение:
Дано:
км/ч
м/с - скорость автобуса на втором участке пути;
с - время, за которое автобус разогнался до скорости, равной 27 км/ч;
с - время движения автобуса с постоянной скоростью, равной 27 км/ч;
с - время торможения автобуса, то есть уменьшения скорости от 27 км/ч до 0.
Необходимо найти: .
Как видно из задачи, общий путь между остановками будет равен пути, потраченном на разгон, пути с постоянной скоростью и пути, с постоянным торможением. Разберем каждый участок пути отдельно.
Путь на первом участке, согласно формуле движения с постоянным ускорением будет иметь вид:
Время нам известно, неизвестно лишь ускорение
. Так как начальная скорость
м/с, то можем записать:
(1)
Ускорение в данном случае будет иметь вид:
, и если
, то получаем:
Подставляя в формулу (1) получим:
Можем сразу посчитать:
м. - пройдя расстояние автобус разгонится до скорости 27 км/ч или 7,5 м/с за 5 секунд.
Вторая часть пути, это путь с постоянной скоростью .
На данном участке пути, пройденное расстояние будет иметь вид:
м. - такое расстояние проедет автобус с постоянной скоростью.
Затем, автобус станет тормозить, то есть у нас равнозамедленное движение с постоянным отрицательным ускорением.
Пройденный путь на данном участке будет, согласно формуле равнозамедленного движения:
(2)
В данном случае, так как автобус в итоге затормозит и уменьшит свою скорость до нуля (), то ускорение можно найти согласно формуле:
Если м/с, то ускорение
будет равно:
(3)
Тогда подставляя формулу (3) в формулу (2) получим:
Все данные нам известны, подставляем и считаем:
м. - за такое расстояние автобус полностью остановится со скорости
м/с за время 8 с.
Теперь, чтобы найти весь путь, пройденный автобусом, сложим ,
и
:
м.
полезная работа A' = A*кпд = N*t*кпд (1)
механическая работа подъема A' = Fт*h = mgh (2)
приравняем (1) (2)
N*t*кпд =mgh
время подъема t = mgh / (N*кпд) = 2000*10*10/(10000*0.6) = 33.3 с
ответ 33 с