Время падения 1-го тела t = √(2S/g) = √(160/10) = 4c - время полёта
V = Vo - gt
В высшей точке подъёма скорость 2-го тела равна 0, поэтому
Vo = gtв
высота подъёма 2-го тела
Н2 = So + Votв - 0.5gtв²
So = 40
Н2 = 40 + 0.5gtв²
С этой высоты начинается свободное падение 2-го тела, длящееся (4 - tв) секунды.
(4 - tв)= √(2Н2/g)
(4 - tв)= √(2(40 + 0.5gtв²)/g)
(4 - tв)² = (80 + 10tв²)/10
(4 - tв)² = 8 + tв²
16 - 8tв + tв² = 8 + tв²
8tв = 8
tв = 1с - время подъёма 2-го тела
Н2 = 40 + 0.5gtв² = 40 + 0,5·10·1 = 45м - максимальная высота подъёма 2-го тела
Vo = gtв = 10·1 = 10м/с - начальная скорость 2-го тела
Схема состоит из:
группы сопротивлений R₂ и R₂', соединенных последовательно,
сопротивления R₃, соединенного параллельно с первой группой,
сопротивления R₁, соединенного последовательно с первыми двумя группами.
Преобразовать схему можно так: (см. рис.1)
Тогда общее сопротивление R₂ и R₂':
R₂₂ = R₂ + R₂' = 20 + 20 = 40 (Ом)
То есть сопротивления R₂ и R₂' можно заменить одним сопротивлением R₂₂ = 40 (Ом) (см. рис.2)
Общее сопротивление R₂₂ и R₃:
R₂₂₃ = R₂₂•R₃ : (R₂₂+R₃) = 40•60 : 100 = 24 (Ом)
Общее сопротивление цепи с учетом R₁:
R = R₁ + R₂₂₃ = 6 + 24 = 30 (Ом)
Общий ток в цепи:
I = I₁ = U/R = 240 : 30 = 8 (A)
Напряжение на первом сопротивлении:
U₁ = I · R₁ = 8 · 6 = 48 (B)
Напряжение на группе сопротивлений R₂₂₃:
U₂₂₃ = U - U₁ = 240 - 48 = 192 (B)
Ток, протекающий через R₃:
I₃ = U₂₂₃ : R₃ = 192 : 60 = 3,2 (A)
Ток, протекающий через R₂₂:
I₂₂ = U₂₂₃ : R₂₂ = 192 : 40 = 4,8 (A)
Напряжение на R₂ и R₂':
U₂ = U₂' = R₂I₂₂ = R₂'I₂₂ = 20 · 4,8 = 96 (B)