Нахождение плотности тела, имеющего сложную геометрическую форму, по формуле (1) связано с определенными трудностями при выражении его объема через соответствующие линейные размеры. Метод гидростатического взвешивания обеспечивает возможность измерить объем этого тела, минуя использование масштабных линеек и нониусов.
Суть метода состоит в последовательном взвешивании данного тела в воздухе и в жидкости (воде) и нахождении по формуле Архимеда веса вытесненной телом (при его погружении) жидкости, а далее и самого объема погруженного в нее тела.
Во-первых, взвешивание тела, подвешенного к левой чашке весов на нити, в воздухе дает нам значение его массы с поправкой на архимедову силу в воздухе по формуле (6). Равновесие весов в этом случае описывается равенством:(*) (рис.2)
Объяснение:
6 Маленький шарик, имеющий заряд q=10нКл, подвешен на нити в пространстве плоского воздушного конденсатора, круглые пластины которого расположены горизонтально. Радиус пластины конденсатора R=10см. Когда пластинам конденсатора сообщили заряд Q = 1 мкКл, сила натяжения нити увеличилась вдвое. Найти массу шарика.
7 Между вертикальными пластинами плоского воздушного конденсатора подвешен на нити маленький шарик, несущий заряд q=10 нКл. Масса шарика m = 6 г, площадь пластины конденсатора S = 0,1 м2. Какой заряд Q надо сообщить пластинам конденсатора, чтобы нить отклонилась от вертикали на угол α = 45°?
Напряженность электрического поля внутри плоского конденсатора связана с зарядом Q на его пластинах соотношением
На шарик внутри конденсатора действуют сила тяжести mg, сила натяжения нити Т и сила F=qE со стороны электрического поля (рис. 335). При равновесии шарика в пространстве конденсатора (см. задачу 591) qF=mg tgφ, или
8 Какой заряд пройдет по проводам, соединяющим пластины плоского воздушного конденсатора и источник тока с напряжением V=6,3 В, при погружении конденсатора в керосин (диэлектрическая проницаемость ε = 2)? Площадь пластины конденсатора S=180 см2, расстояние между пластинами d=2 мм.