В этой теме рассматривается случай, когда силы действуют вдоль оси бруса (осевое растяжение и сжатие). Изучение необходимо начинать с выяснения во о внутренних силовых факторах, действующих в сечениях стержня.
Применение метода сечений позволяет найти величину и направление равнодействующей внутренней (продольной) силы упругости в рассматриваемом сечении. Следует иметь в виду, что в поперечном сечении, перпендикулярном оси стержня, возникают только нормальные напряжения, которые, в силу гипотезы плоских сечений, равномерно распределены в плоскости сечения и определяются по формуле:
,
где N - внутренняя сила, A - площадь поперечного сечения.
Необходимо знать обе формы записи закона Гука, усвоить такие понятия, как модуль упругости при растяжении- сжатии, коэффициент Пуассона. Ознакомиться с методикой испытаний на растяжение, обработки диаграммы растяжения образца из малоуглеродистой стали с её характерными участками. При экспериментальном изучении растяжения и сжатия необходимо усвоить во определения характеристик прочности материала; пределов пропорциональности, упругости, текучести и прочности (временное сопротивление), учесть, что численные их значения условны, так как для их нахождения соответствующие силы делят на первоначальную площадь поперечного сечения испытываемого образца.
Запишем второй закон Ньютона для горизонтального участка:
F – Fсопр – Fтр = 0 , если движение равномерно, где F – сила тяги конькобежца.
F = СSρu²/2 + μmg , где ρ – плотность воздуха, u, S и С – предельная скорость, площадь сечения и характерный коэффициент сопротивления конькобежца.
Запишем второй закон Ньютона для смычки:
v' = ( F – Fсопр – Fтр – mgsinφ ) / m , где φ – текущий угол поворота на смычке; в данном случае Fтр = μN > μmg ! поскольку давление на смычке может быть заметно выше!
Нормальное ускорение в данном случае:
a = v²/R , которое обеспечивается реакцией смычки N за вычетом поперечной к смычке составляющей силы тяжести :
mv²/R = N – mgcosφ , где φ – текущий угол поворота на смычке.
N = mv²/R + mgcosφ ;
Fтр = μN = μmv²/R + μmgcosφ ;
v' = ( F – СSρv²/2 – μmv²/R – μmgcosφ – mgsinφ ) / m ;
Как мы видим, нам необходима максимальная скорость конькобежца u. Будем считать, что это так невнятно дано в виде начальной скорости конькобежца. Учтём ещё, что в нашем случае: arcsin[h/so] ≈ h/so, (h/so)² << 1 и exp(–2μarcsin[h/so]) ≈ 1–2μh/so :
В этой теме рассматривается случай, когда силы действуют вдоль оси бруса (осевое растяжение и сжатие). Изучение необходимо начинать с выяснения во о внутренних силовых факторах, действующих в сечениях стержня.
Применение метода сечений позволяет найти величину и направление равнодействующей внутренней (продольной) силы упругости в рассматриваемом сечении. Следует иметь в виду, что в поперечном сечении, перпендикулярном оси стержня, возникают только нормальные напряжения, которые, в силу гипотезы плоских сечений, равномерно распределены в плоскости сечения и определяются по формуле:
,
где N - внутренняя сила, A - площадь поперечного сечения.
Необходимо знать обе формы записи закона Гука, усвоить такие понятия, как модуль упругости при растяжении- сжатии, коэффициент Пуассона. Ознакомиться с методикой испытаний на растяжение, обработки диаграммы растяжения образца из малоуглеродистой стали с её характерными участками. При экспериментальном изучении растяжения и сжатия необходимо усвоить во определения характеристик прочности материала; пределов пропорциональности, упругости, текучести и прочности (временное сопротивление), учесть, что численные их значения условны, так как для их нахождения соответствующие силы делят на первоначальную площадь поперечного сечения испытываемого образца.