Пусть масса вагона равна М. Система движется, как целое, поэтому ускорение первого и второго вагонов одинаковое, пусть оно равно а. Силу трения можно не учитывать, она одинакова для первого и второго вагонов. Пусть между локомотивом и первым вагоном сила натяжения равна Т₁, между первым и вторым вагонами Т₂. Тогда II з-н Ньютона в проекции на ось ОХ, направление которой совпадает с направлением движения запишется для первого вагона так: Ма = Т₁ - Т₂ А для второго так: Ма = Т₂ Решая эту простенькую систему получим, что Т₁ = 2Ма; Т₂ = Ма. Отсюда Т₁/Т₂ = 2.
Обозначим массу снаряда за 2m (двойка- чтобы потом чисто поменьше связываться с дробями). И он летит со скоростью v, значит импульс р0 = 2mv. Так?
И вот снаряд разорвался на два осколка, пусть скорость каждого будет u, её надо найти.
Проекция скорости u каждого осколка на линию полёта (а мы же понимаем, что центр масс системы, теперь состоящей из двух осколков будет продолжать двигаться по той же прямой, что и ранее летел снаряд, ага?), будет u * cos(90/2) = u * cos(45) = u * корень(2) / 2.
Проекция импульса каждого осколка на линию полёта будет p1 = m * u * корень(2)/2, а обоих вместе взятых p2 = 2m * u * корень(2) / 2 = mu*корень(2)
Теперь вытаскиваем из шпоры закон сохранения импульса, в данном случае проекции импульса на линию полёта, и приравниваем к исходному импульсу p0 = 2m v = p2 = mu*корень(2) сократим массу 2v = u*корень(2) u = 2v / корень(2) = v*корень(2).
Такой вот у меня получается ответ. Но ты не верь мне, а пересчитай сам, а то вдруг ашипка закралась.
p = 0,2 * 5 =1кг*м/с