Условие задачи:
Два тела масс m1 и m2, связанные невесомой нитью, лежат на гладкой горизонтальной поверхности. Нить обрывается, если сила её натяжения превышает значение Tm. C какой максимальной горизонтальной силой F можно тянуть второе тело, чтобы нить не оборвалась?
Задача №2.1.82 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»
Дано:
m1, m2, Tm, Fm−?
Решение задачи:
Схема к решению задачиПотянем второе тело с такой силой Fm, что сила натяжения нити, соединяющей тела, станет очень близка по величине к Tm, но ещё не разорвется.
По условию поверхность, по которой движутся тела, гладкая, значит сил трения нет. Покажем на схеме все силы, действующие на тела, потом запишем второй закон Ньютона для обоих тел в проекции на ось x. Ускорения рассматриваемых тел, естественно, одинаковые.
{Fm—Tm=m2aTm=m1a
Сложим оба выражения системы, а из полученного выразим ускорение a.
Fm=(m1+m2)a
a=Fmm1+m2
Подставим формулу в последнее выражение системы, а оттуда выразим искомую силу Fm.
Tm=Fmm1m1+m2
Fm=Tm(m1+m2)m1
Поделим почленно числитель дроби на знаменатель.
Fm=Tm(1+m2m1)
В условии не было дано числовых данных, задачу требовалось решить в общем виде, что мы и сделали.
ответ: Tm(1+m2m1)
Объяснение:
Sк=0,0012м²
m=6000т
Pп - ?
Давление оказываемое на рельсы
Р=F/S,
Здесь ,
Сила тяжести
F=mg,
g=10н/кг
m1=6000т общая масса поезда . Считаем что состав состоит из n=100 четырёхосных вагонов с массой m2=m1/n=6000/100=60т
У вагона 8 колес. Тогда площадь соприкосновения колес с рельсами.
S1=Sk×8=0,0012×8=0,0096м²,
Сила тяжести 1 вагона
F=m2×g=60×10=600кН ,
Давление оказываемое колёсами на рельсы 1 вагона:
P=F/S1=600/0,0096=62500кПа=62,5 МПа ,
Давление оказываемое колёсами на рельсы составом из 100 вагонов.
Рп=62,5×100=6250 МПа
1 М/С
Объяснение:
решение во вложении.......