Скорость катера относительно воды — v1 = 26 км/ч, скорость течения реки — v2 = 3,0 км/ч. определите скорость, с какой катер идет по течению относительно берега в км/ч.
Q₁ - заряд в точке А q₂ - заряд в точке В найти АС
Выберем систему отсчета связав ее начало с точкой А, тогда АВ = 1 м. В точке С напряженность результирующего поля равна нулю, т. к. векторы Еа и Ев равны и направлены в противоположные стороны Координата точки С равна х м, сл-но АС = х м Выразим модуль напряженности в точке С созданный зарядом q₁ Ea = k*|q₁|/AC² = k*q₁/x² Выразим модуль напряженности в точке С созданный зарядом q₂ Eb = k*|q₂|/CB² = k*q₂/(1-x)² Ea = Eb k*q₁/x² = k*q₂/(1-x)² q₁*(1-x)² = q₂*x² q₁*(1-2x+x²) = q₂*x², раскрываем скобки, преобразуем и получаем (q₂ - q₁)*x² + 2q₁*x - q₁ = 0, подставляем численные значения (6*10⁻¹⁰ - 2*10⁻¹⁰)*x² +2*2*10⁻¹⁰*x - 2*10⁻¹⁰ = 0, вычитаем и делим на 4*10⁻¹⁰ x² + x - 0,5 = 0 Находим дискриминант D = 1² - 4 * (-0,5) = 1 + 2 = 3 х₁ = (-1 + корень(3)) / 2 ≈ 0,4 м х₂ = (-1 - корень(3)) / 2 ≈ -1,4 м - не удовлетворяет условию задачи, т. к. в точке D векторы Еа и Ев сонаправлены (смотри чертеж) и напряженность результирующего поля в этой точке не будет равна нулю! ответ: в точке С на расстоянии 0,4 м от точки А напряженность электрического поля равна нулю.
1. Сила тока связана с зарядом соотношением I = q / t. Соответственно, для этих участков: I1 = 5 / t, I2 = 10 / 2. Работа тока равна Q = UIt, соответственно можно составить равенство: U1 (5/t) t = U2 (10/t) t 5 U1 = 10 U2 U1 = 2 U2 Напряжение на первом участке вдвое больше, чем на втором. 2. Мощность электродвигателя P = UI = 220 В * 10 А = 2200 Вт. Значит в час он потребляет 2200 * 3600 = 7920000 Вт*ч = 7920 кВт*ч. Общее время его работы t = 30 * 8 = 240 ч (не будем переводить в секунды). Значит общее потребление Q = Pt = 7920 * 240 = 1900800 кВт*ч.
То есть.
26+3=29 км\ч