Термодинамическая энтропия {\displaystyle S}, часто именуемая энтропией, — физическая величина, используемая для описания термодинамической системы, одна из основных термодинамических величин. Энтропия является функцией состояния и широко используется в термодинамике, в том числе технической (анализ работы тепловых машин и холодильных установок) и химической (расчёт равновесий химических реакций.
Если в некоторый момент времени энтропия замкнутой системы отлична от максимальной, то в последующие моменты энтропия не убывает — увеличивается или в предельном случае остается постоянной.
Закон не имеет физической подоплёки, а исключительно математическую, то есть теоретически он может быть нарушен, но вероятность этого события настолько мала, что ей можно пренебречь.
Так как во всех осуществляющихся в природе замкнутых системах энтропия никогда не убывает — она увеличивается или, в предельном случае, остается постоянной — все процессы, происходящие с макроскопическими телами, можно разделить на необратимые и обратимые.
Под необратимыми подразумеваются процессы, сопровождающиеся возрастанием энтропии всей замкнутой системы. Процессы, которые были бы их повторениями в обратном порядке — не могут происходить, так как при этом энтропия должна была бы уменьшиться.
Обратимыми же называют процессы, при которых термодинамическая энтропия замкнутой системы остается постоянной. (Энтропия отдельных частей системы при этом не обязательно будет постоянной.)
Время падения 1-го тела t = √(2S/g) = √(160/10) = 4c - время полёта
V = Vo - gt
В высшей точке подъёма скорость 2-го тела равна 0, поэтому
Vo = gtв
высота подъёма 2-го тела
Н2 = So + Votв - 0.5gtв²
So = 40
Н2 = 40 + 0.5gtв²
С этой высоты начинается свободное падение 2-го тела, длящееся (4 - tв) секунды.
(4 - tв)= √(2Н2/g)
(4 - tв)= √(2(40 + 0.5gtв²)/g)
(4 - tв)² = (80 + 10tв²)/10
(4 - tв)² = 8 + tв²
16 - 8tв + tв² = 8 + tв²
8tв = 8
tв = 1с - время подъёма 2-го тела
Н2 = 40 + 0.5gtв² = 40 + 0,5·10·1 = 45м - максимальная высота подъёма 2-го тела
Vo = gtв = 10·1 = 10м/с - начальная скорость 2-го тела
Число молей равно:
ν = 4 моль
Объяснение:
Сколько молей газа находится в , если его внутренняя энергия составляет 15 кДж, а температура 27 °С.
Дано:
U = 15 кДж = 15 000 Дж
t = 27°C; T=300 K
ν - ?
Внутренняя энергия газа:
U = (i/2)·ν·R·T
Если газ считать идеальным, то число степеней свободы равно:
i =3 и формула выглядит так:
U = (3/2)·ν·R·T
Число молей:
ν = 2·U / (3·R·T)
ν = 2·15 000 / (3·8,31·300) ≈ 4 моль