Объяснение:
ускорение верхней доски a₁= - μ₁*g (при условии взаимного скольжения)
ускорение нижней доски a₂= μ₁*g - 2*μ₂*g (при условии взаимного скольжения)
так как μ₁*g - 2*μ₂*g <0 (сила трения скольжения нижней доски по поверхности превышает силу трения между двумя досками) то скольжения доски 2 не происходит и a₂=0
это сильно упрощает все дальнейшие расчеты
за время t₁ проскальзывание между досок прекратится
v+a₁*t₁=a₂*t₁
t₁=v/(a₂-a₁)=v/(0 + μ₁*g)=0,5 сек - это ответ 1
так как нижняя доска неподвижна то движение досок прекратится полностью через время t₂=t₁=0,5 сек - это ответ 2
смещение верхней доски относительно нижней
v*t₁+a₁*t₁²/2-a₂*t₁²/2=2*0,5-0,4*10*0,5²/2-0*t₁²/2=0,5 м - это ответ 3
замеания
респект составителю задания, возможно он ошибся )))
вероятно кто-то будет доказывать что формула a₂= μ₁*g - 2*μ₂*g неверна
что верна формула a₂= μ₁*g - 1*μ₂*g
бог - судья таким физикам )))
речь в том что на поверхность нижняя доска давит весом двух досок, поэтому сила трения удвоена.
решение было бы более громоздким если бы коэффициенты трения были бы μ₁ > 2*μ₂ например μ₁ =0,4 и μ₂ = 0,15, но это уже совсем другая история
Фаза колебаний начальная — значение фазы колебаний (полной) в начальный момент времени, т.е. при t = 0 (для колебательного процесса), а также в начальный момент времени в начале системы координат, т.е. при t = 0 в точке (x, y, z) = 0 (для волнового процесса).
Фаза колебания (в электротехнике) — аргумент синусоидальной функции (напряжения, тока), отсчитываемый от точки перехода значения через нуль к положительному значению
Как правило, о фазе говорят применительно к гармоническим колебаниям или монохроматическим волнам. При описании величины, испытывающей гармонические колебания, используется, например, одно из выражений
Аналогично, при описании волны, распространяющейся в одномерном пространстве, например, используются выражения вида
для волны в пространстве любой размерности (например, в трехмерном пространстве)
Фаза колебаний (полная) в этих выражениях — аргумент функции, т.е. выражение, записанное в скобках; фаза колебаний начальная — величина φ0, являющаяся одним из слагаемых полной фазы. Говоря о полной фазе, слово полнаячасто опускают.
Поскольку функции sin(…) и cos(…) совпадают друг с другом при сдвигеаргумента (то есть фазы) на то во избежание путаницы лучше пользоваться для определения фазы только одной из этих двух функций, а не той и другой одновременно. По обычному соглашению фазой считают аргумент косинуса.
То есть, для колебательного процесса (см. выше) фаза (полная)
для волны в одномерном пространстве
для волны в трехмерном пространстве или пространстве любой другой размерности:
,
где — угловая частота (величина, показывающая, на сколько радиан или градусов изменится фаза за 1 с; чем величина выше, тем быстрее растет фаза с течением времени); t— время; — начальная фаза (то есть фаза при t = 0); k— волновое число; x — координата точки наблюдения волнового процесса в одномерном пространстве; k — волновой вектор; r — радиус-вектор точки в пространстве (набор координат, например,декартовых).
В приведенных выше выражениях фаза имеет размерность угловых единиц (радианы, градусы). Фазу колебательного процесса по аналогии с механическим вращательным также выражают в циклах, то есть долях периода повторяющегося процесса:
1 цикл = 2 радиан = 360 градусов.
В аналитических выражениях (в формулах) преимущественно (и по умолчанию) используется представление фазы в радианах, представление в градусах также встречается достаточно часто (по-видимому, как предельно явное и не приводящее к путанице, поскольку знак градуса не принято никогда опускать ни в устной речи, ни в записях). Указание фазы в циклах или периодах (за исключением словесных формулировок) в технике сравнительно редко.
Иногда (в квазиклассическом приближении, где используются квазимонохроматические волны, т.е. близкие к монохроматическим, но не строго монохроматические) а также в формализме интеграла по траекториям, где волны могут быть и далекими от монохроматических, хотя всё же подобны монохроматическим) рассматривается фаза, являющаяся нелинейной функцией времени t и пространственных координатr, в принципе — произвольная функция