Атмосфе́рное электри́чество — совокупность электрических явлений в атмосфере, а также раздел физики атмосферы, изучающий эти явления. При исследовании атмосферного электричества изучают электрическое поле в атмосфере, её ионизацию и электрическую проводимость, электрические токи в ней, объёмные заряды, заряды облаков и осадков, грозовые разряды и многое другое[что?]. Все проявления атмосферного электричества тесно связаны между собой и на их развитие сильно влияют локальные метеорологические факторы. К области атмосферного электричества обычно относят процессы, происходящие в тропосфере и стратосфере.
Начало изучению атмосферного электричества было положено в XVIII веке американским учёным Бенджамином Франклином[1], экспериментально установившим электрическую природу молнии, и русским учёным Михаилом Ломоносовым — автором первой гипотезы, объясняющей электризацию грозовых облаков. В XX веке были открыты проводящие слои атмосферы, лежащие на высоте более 60—100 км (ионосфера, магнитосфера Земли), установлена электрическая природа полярных сияний и обнаружен ряд других явлений. Развитие космонавтики позволило начать изучение электрических явлений в более высоких слоях атмосферы прямыми методами.
Две основные современные теории атмосферного электричества были созданы английским учёным Ч. Вильсоном и советским учёным Я. И. Френкелем. Согласно теории Вильсона, Земля и ионосфера играют роль обкладок конденсатора, заряжаемого грозовыми облаками. Возникающая между обкладками разность потенциалов приводит к появлению электрического поля атмосферы. По теории Френкеля, электрическое поле атмосферы объясняется всецело электрическими явлениями, происходящими в тропосфере, — поляризацией облаков и их взаимодействием с Землёй, а ионосфера не играет существенной роли в протекании атмосферных электрических процессов.
Исследования атмосферного электричества позволяют выяснить природу процессов, ведущих к колоссальной электризации грозовых облаков, в целях прогноза и управления ими; выяснить роль электрических сил в образовании облаков и осадков; они дадут возможность снижения электризации самолётов и увеличения безопасности полётов, а также раскрытия тайны образования шаровой молнии.
, при условии: ;
*** если же переход от наклонной плоскости скруглённый, и: , то:
.
Объяснение:
По закону сохранений энергии:
;
где:
и – начальные значения кинетической и потенциальной энергии;
и – значения кинетической и потенциальной энергии перед ударом о горизонтальную поверхность, в самом низу наклонной плоскости;
– работа силы трения на наклонной плоскости;
– работа
силы трения на наклонной плоскости,
где: – длина наклонной плоскости;
;
В итоге:
;
(*) ;
Из этого вытекает очевидное условие, что:
;
;
, т.е. угол наклона должен быть более значения: , иначе груз вообще не сдвинется с места, и, разумеется, никакого расстояния не пройдёт, а общая формула (данная в ответе) даст формально отрицательный ответ для высоты .
Теперь «удар», т.е. переход с наклонной плоскости на горизонталь. Во время удара теряется вертикальная составляющая импульса . Это происходит почти мгновенно ( ), под воздействием гасящей его чрезвычайно резко возрастающей на время гашения силы реакции опоры (и веса – соответственно) . Удар груза об опору в момент его перехода на горизонталь будем считать абсолютно неупругим, происходящим таким образом, что груз после него не подскакивает. Тогда можно записать, что:
;
;
За это время груз так же заметно замедляется под воздействием чрезвычайно резко возрастающей на время гашения силы трения:
;
Соответственно, гасится и горизонтальный импульс:
;
;
Из последнего вытекает очевидное условие, что:
;
;
;
, т.е. угол наклона должен быть не более определённого значения: , иначе груз после удара о горизонтальную плоскость просто остановится, и никакого расстояния не пройдёт, а общая формула (данная в ответе) даст формально отрицательный ответ для высоты .
Кинетическая энергия груза после «ударного» торможения:
;
Далее, снова по закону сохранений энергии (с учётом неизменного значения потенциальной):
;
где:
– работа силы трения на горизонтальном участке до остановки;
а – конечная кинетическая энергия (остановка);
;
;
Учитывая (*):
;
;
.
*** Если же переход от наклонной плоскости гладкий, и при этом: , т.е. радиус перехода: , то «ударная» потеря – пренебрежима, и: , а, значит:
.
мыльная пена - скопление мелких мыльных пузырьков, тесно соприкасающихся друг с другом. лучи света тоже преломляются, но человеческий глаз порой не их разглядеть