Перейдём в систему отсчёта, движущуюся со скоростью v0 (полужирным начертанием я выделяю векторы). В ней движение равноускоренное, с нулевой начальной скоростью и ускорением a. Перемещение материальной точки в этой системе отсчёта Sa = a t^2/2 = 4.5 a c^2, модуль перемещения Sa = 18 м = S'.
За это время вся система отсчёта успеет сдвинуться на Sv = v0 t = 3 v0 с, модуль перемещения Sv = 18 м = S'.
Суммарный вектор перемещения равен S = Sa + Sv. Найдём квадрат его длины: S^2 = S^2 = (Sa + Sv)^2 = Sa^2 + 2Sa * Sv + Sv^2 = Sa^2 + 2 * Sa * Sv * cos(Sa, Sv) + Sv^2
Угол между перемещениями равен углу между начальной скоростью и ускорением, тогда cos(...) = -1/2. S^2 = S'^2 - 2 * S'^2 * 1/2 + S'^2 = S'^2 S = S' = 18 м
Модуль средней скорости: v = S/t = 18 м / 3 с = 6 м/с.
На лснованиии принципа Германа- Эйлера-Даламбера и еще там кого-то уже не помню, можно рассмотреть поезд как покоящийся (т. е. не подвижный) , если приложить к нему все внешние силы (это его вес - М*ж) и силы инерции - в данном случае - центробежной силы, которая рана Ф=М*С2 / Р, ж - ускорение свободного падения, т. е. 9,81 м/с2 где М - масса поезда, С - его скорость (С2 - скорость в квалрате) , Р - радиус кривизны траектории, в задаче - радиус по которому изогнулся мост. Тогда на мост действует сила М*ж + М * С2 / Р = 400 000 * 9,81 + 400 000 * (20*20) / 2000 = 3924000 + 80000 = 4004000 Н (ньютонов) = 4004 кН (килоньютона)