Баржа с буксиром движутся вместе. Действие силы натяжения сцепки со стороны буксира на саму сцепку, передаётся на баржу по третьему закону Ньютона. Или, другими словами, сила, с которой сцепка действует на буксир, равна силе, с которой она действует на баржу. Тогда запишем уравнение второго закона Ньютона для системы этих двух тел:
Fт + N1 + N2 - m1g - m2g - Fтр1 - Fтр2 - Т1 + Т2 = ma = (m1 + m2)a
Так как вертикальные силы уравновешивают друг друга, то движения в вертикали не происходит. Тогда запишем уравнение для горизонтальных сил:
Fт - Fтр1 - Fтр2 - Т1 + Т2 = ma = (m1 + m2)a
Fтр1 = Fтр2 => Fт - 2Fтр1 = (m1 + m2)a
a = (Fт - 2Fтр1) / (m1 + m2)
Проанализируем горизонтальные силы баржи и выразим силу натяжения сцепки, подставив в уравнение ускорение системы тел:
T1 - Fтр1 = m1a = m1*((Fт - 2Fтр1) / (m1 + m2))
T1 = m1*((Fт - 2Fтр1) / (m1 + m2)) + Fтр1 = 10000*((5000 - 2*1000) / (10000 + 20000)) + 1000 = 10000*(3000 / 30000) + 1000 = 2000 Н
Т1 = Т2 = Т = 2000 Н или 2 кН
ответ: 2 кН.
Фаза колебаний начальная — значение фазы колебаний (полной) в начальный момент времени, т.е. при t = 0 (для колебательного процесса), а также в начальный момент времени в начале системы координат, т.е. при t = 0 в точке (x, y, z) = 0 (для волнового процесса).
Фаза колебания (в электротехнике) — аргумент синусоидальной функции (напряжения, тока), отсчитываемый от точки перехода значения через нуль к положительному значению
Как правило, о фазе говорят применительно к гармоническим колебаниям или монохроматическим волнам. При описании величины, испытывающей гармонические колебания, используется, например, одно из выражений
Аналогично, при описании волны, распространяющейся в одномерном пространстве, например, используются выражения вида
для волны в пространстве любой размерности (например, в трехмерном пространстве)
Фаза колебаний (полная) в этих выражениях — аргумент функции, т.е. выражение, записанное в скобках; фаза колебаний начальная — величина φ0, являющаяся одним из слагаемых полной фазы. Говоря о полной фазе, слово полнаячасто опускают.
Поскольку функции sin(…) и cos(…) совпадают друг с другом при сдвигеаргумента (то есть фазы) на то во избежание путаницы лучше пользоваться для определения фазы только одной из этих двух функций, а не той и другой одновременно. По обычному соглашению фазой считают аргумент косинуса.
То есть, для колебательного процесса (см. выше) фаза (полная)
для волны в одномерном пространстве
для волны в трехмерном пространстве или пространстве любой другой размерности:
,
где — угловая частота (величина, показывающая, на сколько радиан или градусов изменится фаза за 1 с; чем величина выше, тем быстрее растет фаза с течением времени); t— время; — начальная фаза (то есть фаза при t = 0); k— волновое число; x — координата точки наблюдения волнового процесса в одномерном пространстве; k — волновой вектор; r — радиус-вектор точки в пространстве (набор координат, например,декартовых).
В приведенных выше выражениях фаза имеет размерность угловых единиц (радианы, градусы). Фазу колебательного процесса по аналогии с механическим вращательным также выражают в циклах, то есть долях периода повторяющегося процесса:
1 цикл = 2 радиан = 360 градусов.
В аналитических выражениях (в формулах) преимущественно (и по умолчанию) используется представление фазы в радианах, представление в градусах также встречается достаточно часто (по-видимому, как предельно явное и не приводящее к путанице, поскольку знак градуса не принято никогда опускать ни в устной речи, ни в записях). Указание фазы в циклах или периодах (за исключением словесных формулировок) в технике сравнительно редко.
Иногда (в квазиклассическом приближении, где используются квазимонохроматические волны, т.е. близкие к монохроматическим, но не строго монохроматические) а также в формализме интеграла по траекториям, где волны могут быть и далекими от монохроматических, хотя всё же подобны монохроматическим) рассматривается фаза, являющаяся нелинейной функцией времени t и пространственных координатr, в принципе — произвольная функция