Объяснение:
1. Физическая величина- измеряемое качество, признак или свойство материального объекта или явления, общее в качественном отношении для класса материальных объектов или процессов, явлений, но в количественном отношении индивидуальное для каждого из них.
2. Измерить физическую величину, значит сравнить ее с однородной величиной, принятой за единицу.
3.Эталон единицы физической величины - средство измерений (или комплекс средств измерений), предназначенное для воспроизведения и (или) хранения единицы и передачи ее размера нижестоящим по поверочной схеме средствам измерений и утвержденное в качестве эталона в установленном порядке.
Ве́кторная величина́ — физическая величина, являющаяся вектором (тензором ранга 1). Противопоставляется с одной стороны скалярным (тензорам ранга 0), с другой — тензорным величинам (строго говоря — тензорам ранга 2 и более). Также может противопоставляться тем или иным объектам совершенно другой математической природы.
В большинстве случаев термин вектор употребляется в физике для обозначения вектора в так называемом «физическом пространстве», то есть в обычном трёхмерном пространстве классической физики или в четырёхмерном[1] пространстве-времени в современной физике (в последнем случае понятие вектора и векторной величины совпадают с понятием 4-вектора и 4-векторной величины).
Употребление словосочетания «векторная величина» практически исчерпывается этим. Что же касается употребления термина «вектор», то оно, несмотря на тяготение по умолчанию к этому же полю применимости, в большом количестве случаев всё же весьма далеко выходит за такие рамки. Об этом см. ниже.
Объяснение:
ПУСИ ДЖУСИ НА ТУСЕ.САМКА КРУТАЯЯ
где v1 и v2 — скорости поступательного движения соответственно первой и второй труб после соударения.Решая эти уравнения совместно, найдем, что v1 = 0 и v2 = vo, то есть при соударении трубы обмениваются скоростями поступательного движения — точно так же, как при соударении двух одинаковых шаров.Рассмотрим теперь, что будет происходить с первой, первоначально двигавшейся трубой после удара. В системе координат, связанной с осью трубы, катящейся без проскальзывания по плоскости со скоростью vo. Это означает, что такая труба вращается вокруг своей оси так, что линейная скорость вращения точек ее поверхности равна по величине скорости поступательного движения оси трубы. Поэтому первая труба после столкновения вращается вокруг своей оси с угловой скоростью w = vo/R.
Сила трения Fтр = kmg, действующая на эту трубу, замедляет ее вращение и одновременно сообщает ей ускорение
в направлении первоначального движения трубы. К моменту t эта труба будет иметь скорость поступательного движения
и будет вращаться вокруг своей оси с угловой скоростью
Скорость поступательного движения трубы увеличивается, а скорость вращения трубы уменьшается пропорционально времени. К моментуto, когда скорость поступательного движения оси трубы станет равна линейной скорости вращения трубы вокруг оси, проскальзывание трубы относительно плоскости прекратится, и после этого ни скорость вращения трубы w1', ни скорость поступательного движения оси трубы u1' уже не будут меняться. Из условия
К моменту t = vo/2kg проскальзывание трубы относительно плоскости прекратится. В этот момент труба будет иметь не меняющиеся в дальнейшем скорость поступательного движения u2 = vo/2 и угловую скорость вращения вокруг оси w2 = vo/2R.