1. Импульс момента силы, Mdt, действующий на вращательное тело, равен изменению его момента импульса dL: Mdt = d(Jω) или Mdt = dL Где: Mdt – импульс момента силы (произведение момента силы М на промежуток времени dt) Jdω = d(Jω) – изменение момента импульса тела, Jω = L - момент импульса тела есть произведение момента инерции J на угловую скоростьω ω, а d(Jω) есть dL.
2. Кинематические характеристики Вращение твердого тела, как целого характеризуется углом φ, измеряющегося в угловых градусах или радианах, угловой скоростью ω = dφ/dt (измеряется в рад/с) и угловым ускорением ε = d²φ/dt² (измеряется в рад/с²). При равномерном вращении (T оборотов в секунду), Частота вращения — число оборотов тела в единицу времени: f = 1/T = ω/2 Период вращения — время одного полного оборота. Период вращения T и его частота f связаны соотношением T = 1/f
Линейная скорость точки, находящейся на расстоянии R от оси вращения
Угловая скорость вращения тела ω = f/Dt = 2/T
Динамические характеристики Свойства твердого тела при его вращении описываются моментом инерции твёрдого тела. Эта характеристика входит в дифференциальные уравнения, полученные из уравнений Гамильтона или Лагранжа. Кинетическую энергии вращения можно записать в виде: E=
В этой формуле момент инерции играет роль массы, а угловая скорость роль обычной скорости. Момент инерции выражает геометрическое распределение массы в теле и может быть найден из формулы:
Момент инерции механической системы относительно неподвижной оси a («осевой момент инерции») — физическая величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси: =∑
где: mi — масса i-й точки, ri — расстояние от i-й точки до оси. Осевой момент инерции тела Ja является мерой инертности тела во вращательном движении вокруг оси a подобно тому, как масса тела является мерой его инертности в поступательном движении.
3. Маятник представляет собой замкнутую систему. Если маятник находится в крайней точке, его потенциальная энергия максимальна, а кинетическая равна нулю. Как только маятник начинает двигаться, егопотенциальная энергия уменьшается, а кинетическая - увеличивается. В нижней точке кинетическая энергия максимальна, а потенциальная - минимальна. После этого начинается обратный процесс. Накопленная кинетическая энергия двигает маятник вверх и увеличивает, тем самым потенциальную энергию маятника. Кинетическая энергия уменьшается, пока маятник снова не остановится уже в другой крайней точке. Можно сказать, что в процессе движения маятника происходит переход потенциальной энергии в кинетическую и наоборот.
Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой силами тяготения и силами упругости, остается постоянной. Или так: Полная механическая энергия замкнутой системы тел, взаимодействующих силами тяготения и силами упругости, остается неизменной. (Сумма кинетической и потенциальной энергии тел называется полной механической энергией)
1. До выстрела пружина пистолета сжата, то есть обладает потенциальной энергией. В момент выстрела пружина разжимается, толкая снаряд, при этом её потенциальная энергия переходит в кинетическую энергию снаряда. Горизонтальное перемещение снаряда не меняет его энергию, но при этом он ещё и падает, значит его потенциальная энергия уменьшается, а точнее переходит в кинетическую (в добавок к начальной его кинетической энергии от пружины). Чем ниже снаряд, тем меньше его потенциальная энергия, и тем выше кинетическая (то есть и скорость движения). У самой земли прям перед падением его потенциальная энергия равна 0, а кинетическая максимальна.
2. Найдём скорость вылета V0 через начальную кинетическую энергию Eк0: Eк0 = m*V0²/2 Как говорилось выше, эта кинетическая энергия равна потенциальной энергии сжатой пружины Eпр: Eк0 = Eпр m*V0²/2 = Eпр Потенциальная энергия пружины жёсткостью k, сжатой на величину x: Eпр = k*x²/2, тогда m*V0²/2 = k*x²/2 m*V0² = k*x² V0 = √(k*x²/m) V0 = √(1800 Н/м * (4 см)² / 80 г) Переведу всё в СИ: V0 = √(1800 Н/м * (0,04 м)² / 0,08 кг) V0 = √(36 м²/с²) V0 = 6 м/с
3. На высоте h =1 м снаряд обладал потенциальной энергией относительно земли: Eп = m*g*h Прям перед падением на землю вся эта потенциальная энергия перешла в кинетическую (в добавок к кинетической энергии от пружины). Тогда перед падением кинетическая энергия: Eк = Eпр + Eп Eк = k*x²/2 + m*g*h Распишем кинетическую энергию через массу m и искомую скорость V: m*V²/2 = k*x²/2 + m*g*h V = √(k*x²/m + 2*g*h) V = √(1800 Н/м * (0,04 м)² / (0,08 кг) + 2 * 10 Н/кг * 1 м) V = √(56 м²/с²) V ≈ 7,5 м/с
c=Q/m(t-t1)
c=213*10 Дж/кг*С