Задание дано не корректно!
Во первых, не сказано, какого типа лампы (накаливания, галогенные, люминесцентные или светодиодные).
Во вторых, для определения потребляемой лампами мощности необходимо значение напряжения.
В третьих, не все лампы допускают последовательное соединение.
Поэтому примем лампы накаливания (допускающие последовательное соединение) и стандартное напряжение 220 В.
В этом случае тоже есть "подводный камень".
Лампы накаливания имеют нелинейную вольт-амперную характеристику. При разном напряжении (и, следовательно, температуре спирали) лампа имеет разное сопротивление.
Поэтому примем ещё одно допущение - не учитываем разность сопротивления лампы при разных напряжениях.
Лампа мощностью 40 Вт имеет сопротивление 220²/40 = 1210 Ом.
Лампа мощностью 60 Вт имеет сопротивление 220²/60 = 806,6667 Ом.
Их общее сопротивление равно 1210 + 806,6667 = 2016,667 Ом.
Ток вцепи равен 220/2016,667 = 0,109091 А.
Тогда лампа в 40 Ватт потребляет 0,109091²*1210 = 14,4 Вт.
Лампа в 60 Ватт потребляет 0,109091²*806,6667 = 9,6 Вт.
Это записывается так: v^2/(R+h) = gam*M/(R+h)^2
здесь gam - универсальная гравитационная постоянная, M - масса Земли, R - радиус Земли.
учитывая, что g = gam*M/R^2, уравнение можно переписать так:
v^2/(R+h) = g*R^2/(R+h)^2, где g - ускорение свободного падения близ поверхности Земли.
Решая уравнение относительно линейной скорости v, получаем:
v = R*sqrt(g/(R+h)). Подставляя величины (радиус и высоту необходимо перевести в метры!), получаем скорость на орбите v = 6532 м в сек.