Выталкивающая сила численно равна весу жидкости в объеме погруженной части тела:
Fₐ = ρgV, где ρ - плотность жидкости, кг/м³
g = 9,8 H/кг - ускорение своб. падения
V - объем погруженной части тела, м³
Таким образом, выталкивающая сила зависит только от плотности жидкости, ускорения свободного падения и объема погруженной части тела.
От глубины погружения (если только тело не прижато плотно ко дну) величина выталкивающей силы не зависит.
Найдем формулу, связывающую амплитудное значение тока в контуре с амплитудным значением напряжения. Как известно напряжение в контуре
U(t)=q(t)C=>qmax=Umax∗C(1) В тоже время I(t)=dqdt=q′(t). Величина заряда меняется по гармоническому закону q(t)=qmaxcos(ωt)=>I(t)=q′(t)=−qmax∗ωsin(ωt), таким образом мы получили, что Imax=−qmaxω(2) подставляем (1) в (2) Imax=−UmaxCωОсталось найти циклическую частоту ω=2πT, в то же время период равен по формуле Томсона T=2πLC−−−√, подставляем в (2)Imax=−Umax∗C2πT=−Umax∗C2π2πLC−−−√==−Umax∗CLC−−−√=−UmaxCL−−√Подставляем данные задачи Imax=−500В400∗10−12Ф10∗10−3Гн−−−−−−−−−−−√=−0,1А
m=80кг
масса на марсе=80кг
вес на марсе=80*3,7=296кг