Какое кол-во теплоты потребуется для того,чтобы в алюминиевом чайнике массой в 700 гр вскипятить воду массой 2 кг.начальная температура воды равна 20 °с
Количество теплоты, необходимое для нагревания воды массы m1 в чайнике массы m2 от температуры t0 до температуры tk: Q=Q1+Q2, где Q1 — количество теплоты, необходимое для нагревания воды; Q2 — количество теплоты, необходимое для нагревания чайника Так как, Q1=cm1(tk-t0), Q2=c2m2(tk-t0) Тогда, Q=c1m1(tk-t0)+c2m2(tk-t0)=(c1m1-c2m2)(tk-t0)=(4200*2+920*0.7)*(100-20)=723520 Дж
Предположение: Пуля не деформируется. Для начала введем систему отсчета: пусть начало координат лежит в месте вхождения пули в вал, а пуля движется вдоль оси X (в положительном направлении). Координату пули отметим функцией x(t). Начнем наблюдение в момент касания пулей вала. Тогда x(0) = 0. Под начальной скоростью пули понимаем скорость пули относительно начала отсчета в момент времени t=0, то есть .
По аналогии с жидкостями, можно рассматривать вискозность земли, тогда сила, действующая на пулю (замедляющая сила) пропорциональна скорости пули с фактором b: Земля проявляет вискозность только при достаточной скорости пули, допустим при . Пренебрегая силой тяжести, а значит и движением пули по вертикали, запишем второй закон Ньютона: Пусть . Тогда дифференциальное уравнение имеет вид Решением является линейная комбинация функций:
То есть Тогда Так как , . Тогда Соответственно, в любой момент времени координата пули прямо пропорциональна начальной скорости, то есть удвоение начальной скорости приведет к удвоению пройденного расстояния. Найдем это расстояние: Пусть момент, когда движение пули перестанет следовать законом жидкостей, означает для нас остановку пули. Тогда пуля движется до тех пор, пока , то есть Тогда Соответственно При удвоении начальной скорости, конечная координата равна: Тогда отношение нового пути к старому равно , При, допустим, , это отношение равно .
Предположение: Пуля не деформируется. Для начала введем систему отсчета: пусть начало координат лежит в месте вхождения пули в вал, а пуля движется вдоль оси X (в положительном направлении). Координату пули отметим функцией x(t). Начнем наблюдение в момент касания пулей вала. Тогда x(0) = 0. Под начальной скоростью пули понимаем скорость пули относительно начала отсчета в момент времени t=0, то есть .
По аналогии с жидкостями, можно рассматривать вискозность земли, тогда сила, действующая на пулю (замедляющая сила) пропорциональна скорости пули с фактором b: Земля проявляет вискозность только при достаточной скорости пули, допустим при . Пренебрегая силой тяжести, а значит и движением пули по вертикали, запишем второй закон Ньютона: Пусть . Тогда дифференциальное уравнение имеет вид Решением является линейная комбинация функций:
То есть Тогда Так как , . Тогда Соответственно, в любой момент времени координата пули прямо пропорциональна начальной скорости, то есть удвоение начальной скорости приведет к удвоению пройденного расстояния. Найдем это расстояние: Пусть момент, когда движение пули перестанет следовать законом жидкостей, означает для нас остановку пули. Тогда пуля движется до тех пор, пока , то есть Тогда Соответственно При удвоении начальной скорости, конечная координата равна: Тогда отношение нового пути к старому равно , При, допустим, , это отношение равно .
Q=Q1+Q2,
где Q1 — количество теплоты, необходимое для нагревания воды; Q2 — количество теплоты, необходимое для нагревания чайника
Так как,
Q1=cm1(tk-t0), Q2=c2m2(tk-t0)
Тогда,
Q=c1m1(tk-t0)+c2m2(tk-t0)=(c1m1-c2m2)(tk-t0)=(4200*2+920*0.7)*(100-20)=723520 Дж