Объяснение:
Дано:
m = 800 г = 0,8 кг
p₁ = 1,6 кПа = 1600 Па
p₂ = 5·p₁ = 5·1600 = 8000 Па
p₃ = p₂/2 = 8000 / 2 = 4000 Па
ρ - ?
Пусть размеры бруска a×b×c
Тогда:
S₁ = a·b
S₂ =b·c
S₃ = a·c
Имеем:
p₁ = m·g / S₁; S₁ = m·g / p₁ = 0,8·10/1600 = 0,005 м²
p₂ = m·g / S₂; S₂ = m·g / p₂ = 0,8·10/8000 = 0,001 м²
p₃ = m·g / S₃; S₃= m·g / p₃ = 0,8·10/4000 = 0,002 м²
Решим систему:
a·b = 0,005
b·c = 0,001
a·c = 0,002
Получаем:
a = 10 см
b = 5 см
c = 2 см
Объем:
V = 10·5·2 = 100 см³
Плотность:
ρ = m/V = 800 / 100 = 8 г/см³
Дано:
\(L=300\) м, \(S_1=2t+2,5t^2\), \(S_2=3t\), \(S_1(\tau)-?\)
Решение задачи:
Если тела движутся из двух разных точек A и B, причем навстречу друг другу, то сумма пройденных ими путей за время \(\tau\) до встречи равна расстоянию между этими точками \(L\), то есть:
S1(τ)+S2(τ)=L 2τ+2,5τ2+3τ=300 Решим это квадратное уравнение для нахождения времени до встречи: 2,5τ2+5τ–300=0 τ2+2τ–120=0 D=4+4⋅120=484 τ=–2±222 [τ=–12сτ=10с
Время не может быть отрицательным, поэтому откидываем первый корень. Для того, чтобы найти S1(τ) подставим найденное время в уравнение движения первого тела. S1(10)=2⋅10+2,5⋅102=270м ответ: 270 м.
a = F₁/m₁
a = F₂/(m₁ + m₂)
Следовательно, F₁/m₁ = F₂/(m₁ + m₂)
откуда
m₂ = m₁(F₂ - F₁)/F₁ = 0.5(24 - 6)/6 = 1.5 кг