Решение: Средняя скорость автомобиля равна: Vср.=(S1+S2)/(t1+t2) Расстояние первой части пути, проехавшего автомобиля составляет: S=V*t S1=4v/5*t1=4v*t1/5 Расстояние второй части пути, проехавшего автомобиля составляет: S2=2v*t2 А так как средняя скорость на всём пути равна 2v, составим уравнение: (4v*t1/5+2v*t2)/(t1+t2)=v 4v*t1/5+2v*t2=v*(t1+t2) приведём уравнение к общему знаменателю 5 4v*t1+5*2v*t2=5*v*(t1+t2) v*(4t1+10t2)=v*(5t1+5t2) Разделим левую и правую части уравнения на (v) 4t1+10t2=5t1+5t2 4t1-5t1=5t2-10t2 -t1=-5t2 умножим левую и правую части уравнения на (-1) t1=5t2 Отсюда следует, что соотношение времени равно: t1/t2=1/5
Обозначим массу снаряда за 2m (двойка- чтобы потом чисто поменьше связываться с дробями). И он летит со скоростью v, значит импульс р0 = 2mv. Так?
И вот снаряд разорвался на два осколка, пусть скорость каждого будет u, её надо найти.
Проекция скорости u каждого осколка на линию полёта (а мы же понимаем, что центр масс системы, теперь состоящей из двух осколков будет продолжать двигаться по той же прямой, что и ранее летел снаряд, ага?), будет u * cos(90/2) = u * cos(45) = u * корень(2) / 2.
Проекция импульса каждого осколка на линию полёта будет p1 = m * u * корень(2)/2, а обоих вместе взятых p2 = 2m * u * корень(2) / 2 = mu*корень(2)
Теперь вытаскиваем из шпоры закон сохранения импульса, в данном случае проекции импульса на линию полёта, и приравниваем к исходному импульсу p0 = 2m v = p2 = mu*корень(2) сократим массу 2v = u*корень(2) u = 2v / корень(2) = v*корень(2).
Такой вот у меня получается ответ. Но ты не верь мне, а пересчитай сам, а то вдруг ашипка закралась.