Дано:
\(L=300\) м, \(S_1=2t+2,5t^2\), \(S_2=3t\), \(S_1(\tau)-?\)
Решение задачи:
Если тела движутся из двух разных точек A и B, причем навстречу друг другу, то сумма пройденных ими путей за время \(\tau\) до встречи равна расстоянию между этими точками \(L\), то есть:
S1(τ)+S2(τ)=L 2τ+2,5τ2+3τ=300 Решим это квадратное уравнение для нахождения времени до встречи: 2,5τ2+5τ–300=0 τ2+2τ–120=0 D=4+4⋅120=484 τ=–2±222 [τ=–12сτ=10с
Время не может быть отрицательным, поэтому откидываем первый корень. Для того, чтобы найти S1(τ) подставим найденное время в уравнение движения первого тела. S1(10)=2⋅10+2,5⋅102=270м ответ: 270 м.
*ответ*333
Объяснение:
Решение задачи: Вода массой m1 при теплообмене нагреется до некоторой температуры t, а вода массой m2 – остынет до той же температуры. Запишем уравнение теплового баланса: Q1=Q2 Здесь Q1 – количество теплоты, полученное водой массой m1 при теплообмене, а Q2 – количество теплоты, отданное водой массой m2. cm1(t–t1)=cm2(t2–t) m1(t–t1)=m2(t2–t) Раскроем скобки в обеих частях равенства: m1t–m1t1=m2t2–m2t В левую часть перенесем члены с множителем t, а в правую – все оставшиеся. m1t+m2t=m1t1+m2t2 t(m1+m2)=m1t1+m2t2 t=m1t1+m2t2m1+m2 Задача решена в общем виде. Можно подставить значения величин без перевода в систему СИ, тогда ответ мы получим в градусах Цельсия. t=50⋅20+100⋅8050+100=60∘C=333К