Объяснение:
мощность силы равна произведению силы на скорость либо
мощность силы равна работе за единицу времени (произведению силы на расстояние - это работа, и все это делить на время)
P = F*S/t = F*v
при падении с высоты тело движется равноускоренно а значит скорость тела изменяется.
значит за любые равные промежутки времени тело проходит различные расстояния
значит за любые равные промежутки времени сила тяжести выполняет различную работу
значит за любые равные промежутки времени мощность силы тяжести различна
F = -mg
x = h -gt²/2
v = - gt
P = F*v = m*g²*t - мощность силы тяжести во время падения растет пропорционально времени.
Дано:
v = 0,5*V(1-я косм.)
h - ?
Есть формула для центростремительного ускорения:
a = V²/R
Вместо "a" используем ускорение свободного падения:
g = V²/R
Выражая из этой формулы V, получим формулу для первой космической скорости:
V² = gR
V = √(gR), где g - это примерно 9,8 м/с², а R - радиус Земли.
По условию скорость спутника в 2 раза меньше первой космической:
v = 0,5*V(1-я косм.), значит:
v = 0,5*√(gR) - поместим 0,5 под корень:
v = √(0,5²*gR)
C другой стороны есть формула закона всемирного тяготения:
Fтяг = GMm/R², где G - гравитационная постоянная, M - масса Земли, а R - её радиус. Приравняем эту формулу к формуле силы тяжести (т.к. обе, по сути, описывают одно и то же явление, хоть сила тяжести и является частным случаем силы тяготения):
Fтяг = Fтяж
GMm/R² = mg - разделим обе части на "m"
GM/R² = g - это уравнение для "g". Подставим его в выражение для скорости спутника:
v = √(0,5²*gR) = √(0,5²*(GM/R²)R) = √(0,5²*GM/R) - очевидно, что ни к G, ни к M значение 0,5² не может относится, т.к. G - это постоянная, а M - масса Земли, которая вряд ли ни с того ни с сего уменьшилась. Тогда остаётся только радиус. Но земной радиус тоже не может уменьшаться или увеличиваться из-за того, что какой-то спутник летает вокруг Земли. Поэтому вернёмся к формуле для "g":
g = GM/R² - это g, которое у самой поверхности Земли. Чем дальше от поверхности, тем больше становится расстояние, и тем меньше становится g. Получается, что для тел, которые находятся на уже значительном расстоянии от Земли, один лишь радиус использовать нельзя - надо использовать сумму радиуса и высоты:
g = GM/(R + h)² - именно эту формулу мы используем для выражения скорости спутника:
g = v²/(R + h)
v² = g*(R + h)
v = √(g*(R + h)) = √((GM/(R + h)²)*(R + h)) = √(GM/(R + h))
и приравняем её к формуле для половины первой космической скорости, только теперь уже не будем помещать 0,5 под корень:
√(GM/(R + h)) = 0,5√(GM/R) - теперь можно выразить h и найти значение:
√(GM/(R + h)) = 0,5√(GM/R)
√(GM)/√(R + h) = 0,5√(GM)/√R | : √(GM)
1/√(R + h) = 0,5/√R
√(R + h) = 1/(1/(2√R)) | ² - возведём обе части в квадрат
R + h = 4R
h = 4R - R = 3R
Радиус Земли примерно равен 6400 км, тогда:
h = 3R = 3*6400 = 19200 км или 1,92*10^7 м
Проверим:
Масса Земли примерно равна 6*10^(24) кг, тогда:
v = √(GM/(R + h)) = √(6,67*10^(-11)*6*10^(24) / (6,4*10^6 + 1,92*10^7)) = √(6,67*6*10^(13) / (6,4*10^6 + 19,2*10^6)) = √(40,02*10^(13) / (10^6*(6,4 + 19,2))) = √(40,02*10^7/25,6) = 3953,835163 = 3954 м/с
V(1-я косм.) = 0,5√(GM/R) = 0,5*√(6,67*10^(-11)*6*10^(24)/6,4*10^6) = 0,5*√(40,02*10^7/6,4) = 0,5*7907,6703... = 0,5*7908 = 3954 м/с
Всё сходится.
ответ: 19200 км или 1,92*10^7 м.