По II З. Ньютона
F=ma F-равнодействующая всех сил
3F=0.4ma
a=3F/0.4m
7.5F=a
F=a/7.5
Дано:
U0=200 В, P0=400 Вт, t1=t2, R−?
Решение задачи:
Схема к решению задачи Если чайники, нагревая одно и то же количество воды, закипают за одно и то же время, значит в них выделяется одна и та же мощность, то есть:
P1=P2(1)
Сначала определим сопротивление чайников R0. Так как при напряжении U0 они потребляют мощность P0, то сопротивление R0 найдем следующим образом:
P0=U20R0⇒R0=U20P0(2)
Найдем мощность P1, выделяющуюся в каждом чайнике при их последовательном соединении. Пусть напряжение сети, к которым подключены чайники, равно U. Тогда через чайники будет течь ток I1, который можно определить по закону Ома:
I1=UR+2R0
Тогда мощность P1 равна:
P1=I21R0
P1=U2R0(R+2R0)2
Далее определим мощность P2, выделяющуюся в каждом чайнике при их параллельном соединении. Через соединительные провода будет течь ток I2, который также определим из закона Ома:
I2=UR+0,5R0
Так как чайники одинаковые (то есть имеют одинаковые сопротивления), то через них течет ток I22. Тогда мощность P2 равна:
P2=(I22)2R0=14I22R0
P2=U2R04(R+0,5R0)2
Учитывая (1), имеем:
U2R0(R+2R0)2=U2R04(R+0,5R0)2
(R+2R0)2=4(R+0,5R0)2
Раскроем скобки в обеих частях уравнения:
R2+4RR0+4R20=4R2+4RR0+R20
R2+4R20=4R2+R20
3R2=3R20
R=R0
Принимая во внимание (2), получим:
R0=U20P0
Численный ответ задачи равен:
R0=2002400=100Ом=0,1кОм
Объяснение:
ответ: ρ=1890.
Объяснение:
Пусть p кг/м³ - плотность материала шара, V - его объём, k Н/м - жёсткость пружины, x м - её удлинение под действием силы тяжести при отсутствии сосуда, x1 м - то же при наличии сосуда. При отсутствии сосуда на шар действуют сила упругости пружины F=k*x и сила тяжести Fт=m*g, где m=p*V - масса шара, g - ускорение свободного падения. Так как по условию шар неподвижен, то F=Fт, или k*x=p*V*g (*). При наличии сосуда на шар действуют сила упругости F1=k*x1, сила Архимеда F2=p0*V0*g и сила тяжести Fт=p*V*g, где V0=μ*V=0,6*V - часть объёма шара, погружённая в жидкость. Так как и в этом случае шар неподвижен, то F1+F2=Fт, или k*x1+p0*V0*g=p*V*g, или k*x1+900*0,6*V*g=k*x1+540*V*g=p*V*g (**). И так как по условию x1=x/η=x/1,4, то отсюда x=1,4*x1 м. Подставляя это выражение в уравнение (*) и присоединяя к нему уравнение (**), получаем систему уравнений:
1,4*k*x1=p*V*g
k*x1+540*V*g=p*V*g
Из первого уравнения находим p=1,4*k*x1/(V*g). Разделив теперь второе уравнение на произведение V*g, получаем уравнение k*x1/(V*g)+540=p. Умножив это уравнение на 1,4, приходим к уравнению
p+756=1,4*p. Решая его, находим p=756/0,4=1890 кг/м³.
на 50% увеличилось
ответ:50%