Электрический ток в жидкостях
Как известно, химически чистая (дистиллированная) вода является плохим проводником. Однако при растворении в воде различных веществ (кислот, щелочей, солей и др.) раствор становится проводником, из-за распада молекул вещества на ионы. Это явление называется электролитической диссоциацией, а сам раствор электролитом проводить ток.
В отличие от металлов и газов прохождение тока через электролит сопровождается химическими реакциями на электродах, что приводит к выделению на них химических элементов, входящих в состав электролита.
Первый закон Фарадея: масса вещества, выделяющегося на каком-либо из электродов, прямо пропорциональна заряду через электролит
Электрохимический эквивалент вещества - табличная величина.
Второй закон Фарадея:
Протекание тока в жидкостях сопровождается выделением теплоты. При этом выполняется закон Джоуля-Ленца.
Электрический ток в металлах
При прохождении тока металлы нагреваются. В результате чего ионы кристаллической решетки начинают колебаться с большей амплитудой вблизи положений равновесия. В результате этого поток электронов чаще соударяется с кристаллической решеткой, а следовательно возрастает сопротивление их движению. При увеличении температуры растет сопротивление проводника.
Каждое вещество характеризуется собственным температурным коэффициентом сопротивления - табличная величина. Существуют специальные сплавы, сопротивление которых практически не изменяется при нагревании, например манганин и константан.
Явление сверхпроводимости. При температурах близких к абсолютному нулю (-2730C) удельное сопротивление проводника скачком падает до нуля. Сверхпроводимость - микроскопический квантовый эффект.
Применение электрического тока в металлах
Лампа накаливания производит свет за счет электрического тока, протекающего по нити накала. Материал нити накала имеет высокую температуру плавления (например, вольфрам), так как она разогревается до температуры 2500 – 3250К. Нить помещена в стеклянную колбу с инертным газом.
Электрический ток в газах
Газы в естественном состоянии не проводят электричества (являются диэлектриками), так как состоят из электрически нейтральных атомов и молекул. Проводником может стать ионизированный газ, содержащий электроны, положительные и отрицательные ионы.
Ионизация может возникать под действием высоких температур, различных излучений (ультрафиолетового, рентгеновского, радиоактивного), космических лучей, столкновения частиц между собой.
Ионизированное состояние газа получило название плазмы. В масштабах Вселенной плазма - наиболее распространенное агрегатное состояние вещества. Из нее состоят Солнце, звезды, верхние слои атмосферы.
Прохождение электрического тока через газ называется газовым разрядом.
В "рекламной" неоновой трубке протекает тлеющий разряд. Светящийся газ представляет собой "живую плазму".
Между электродами сварочного аппарата возникает дуговой разряд.
Дуговой разряд горит в ртутных лампах - очень ярких источниках света.
Искровой разряд наблюдаем в молниях. Здесь напряженность электрического поля достигает пробивного значения. Сила тока около 10 МА!
Для коронного разряда характерно свечение газа, образуя "корону", окружающую электрод. Коронный разряд - основной источник потерь энергии высоковольтных линий электропередачи.
Электрический ток в вакууме
А возможно ли распространение электрического тока в вакууме (от лат. vacuum - пустота)? Поскольку в вакууме нет свободных носителей зарядов, то он является идеальным диэлектриком. Появление ионов привело бы к исчезновению вакуума и получению ионизированного газа. Но вот появление свободных электронов обеспечит протекание тока через вакуум. Как получить в вакууме свободные электроны? С явления термоэлектронной эмиссии - испускания веществом электронов при нагревании.
Вакуумный диод, триод, электронно-лучевая трубка (в старых телевизорах) - приборы, работа которых основана на явлении термоэлектронной эмиссии. Основной принцип действия: наличие тугоплавкого материала, через который протекает ток - катод, холодный электрод, собирающий термоэлектроны - анод.
Итоговый тест по теме:
«Альдегиды и кетоны»
Часть А Выберите один правильный ответ из четырёх предложенных.
А1. К классу предельных альдегидов принадлежит вещество состава
1) СnH2n-2O 2) СnH2n+2O 3) СnH2nO 4) СnH2nO2
A2. Вещество состава С2Н4О может быть
1) многоатомным спиртом 2) альдегидом
3) кислотой 4) простым эфиром
А3. Вещество, структура которого СН3─С═СН─СН2─СН═О, называется
│
СН3
1) 2-метил-5-оксопентен-2 2) 2-метилпентен-2-аль-5
3) 5-метилгексен-4-аль 4) 4-метилпентен-3-аль
А4. Гомологом бутаналя является
1) пропаналь 2) бутанон 3) бутанол-1 4) бутан
А5. Изомером бутаналя не является
1) бутен-2-ол-1 2) бутанон
3) циклобутанол 4) диэтиловый эфир
А6. Для пропаналя характерна изомерия
1) углеродного скелета 2) геометрическая
3) межклассовая 4) оптическая
А7. Среди утверждений:
А. В карбонильной группе альдегидов электронная плотность связи смещена к атому
углерода.
Б. В молекулах альдегидов есть непрочная π-связь, −
1) верно только А 2) верно только Б 3) верны оба утверждения
4) оба утверждения неверны
А8. Температура кипения этаналя ниже, чем у этанола, потому что
1) у этанола выше молекулярная масса 2) в молекуле этанола нет непрочной π-связи
3) в молекуле этаналя меньше атомов водорода 4) между молекулами этаналя не
образуются водородные связи
А9. Число σ-связей в молекуле ацетальдегида равно
1) 2 2) 3 3) 5 4) 6
А10. Для формальдегида не характерны реакции
1) присоединения 2) замещения 3) окисления 4) восстановления
А11. При нагревании ацетальдегида со свежеосаждённым гидроксидом меди(II)
наблюдается
1) появление жёлтого, а затем красного осадка
2) превращение голубого осадка гидроксида меди(II) в чёрный
3) растворение осадка и образование голубого раствора
4) растворение осадка и образование васильково-синего раствора
А12. Образование «серебряного зеркала» в реакции с аммиачным раствором оксида
серебра доказывает, что в молекуле вещества содержится
1) карбоксильная группа 2) двойная связь между атомами С и О
3) альдегидная группа 4) атом углерода в sp2-гибридном состоянии
А13. При окислении пропаналя образуется
1) пропан 2) пропанол-1 3) пропановая кислота 4) пропанол-2
А14. С аммиачного раствора оксида серебра можно различить растворы
1) метанола и этанола 2) этанола и этаналя 3) ацетальдегида и пропаналя
4) глицерина и этиленгликоля
А15. С гидроксидом меди(II) реагируют оба вещества
1) глицерин и пропаналь 2) ацетальдегид и этанол
3) этанол и фенол 4) фенол и формальдегид
А16. При восстановлении бутаналя получается
1) бутанол-1 2) бутановая кислота 3) бутанол-2 4) дибутиловый эфир
А17. Среди утверждений:
А. Альдегиды проявляют слабые кислотные свойства.
Б. Альдегиды, в отличие от кетонов, легко окисляются, −
1) верно только А 2) верно только Б 3) верны оба утверждения
4) оба утверждения неверны
А18. В цепи превращений СН3─СН2─ОН →Х → СН3─СООН веществом Х является
1) СН≡СН 2) СН2═СН2 3) СН3─СН2Cl 4) СН3─СН═О
А19. В цепи превращений Х СН3─СН═О Y
веществами Х и Y соответственно являются
1) этилен и этанол 2) этанол и уксусная кислота
3) ацетилен и этанол 3) ацетилен и уксусная кислота
А20. Формальдегид можно получить
1) крекингом метана 2) гидратацией ацетилена
3) окислением метанола 4) гидролизом хлорметана
А21. Ацетальдегид не образуется при
1) гидратации ацетилена 2) дегидрировании уксусной кислоты
3) каталитическом окислении этилена 4) каталитическом дегидрировании этанола
А22. Гидратацией алкина может быть получен
1) формальдегид 2) ацетальдегид 3) пропионовый альдегид 4) масляный альдегид
А23. Формальдегид не используется для
1) дезинфекции 2) получения пластмасс 3) удобрения почвы
4) протравливания семян
А24. Спирт может быть получен при взаимодействии альдегида с
1) гидроксидом меди(II) 2) щёлочью
3) хлороводородом 4) водородом на катализаторе
1) поднимая ногу, снег на ней движется вверх, затем мы резко топаем ногой, а снег по инерции продолжает двигаться вверх, поэтому мы стряхиваем его.
2) принцип тот-же. что и в первом вопросе
3) Ветилятор набирает скорость когда включен в сеть, после отключения от сети он продолжает вращаться, потомучто скорость большая, а сопротивление воздуха небольшое.