Объяснение:
Попробуем записать уравнения движения для этих тел:
Пусть, например, первое тело будет двигаться вдоль оси Х, а второе тело против. Подставим в эти уравнения известную начальную скорость υ₀ = 0 и ускорение a = 2 м/с². Тогда уравнения движения примут следующий вид:
Для первого тела:
Для второго тела:
Оно движется ускоряясь против оси Х, поэтому проекция ускорения на ось отрицательная.
Можно заметить, что уравнения для перемещения тел и для их скорости почти идентичны. Только одно из тел будет двигаться вдоль оси (с положительной скоростью и ускорением), а другое против (с отрицательной скоростью и ускорением).
Так как тела начали движение одновременно, к моменту встречи они успеют развить одинаковую по модулю, но противоположную по знаку скорость. В этом легко убедиться, если попробовать подставлять разные значения времени в уравнения для скорости тел.
Резисторы R₆ и R₇ соединены параллельно:
R₆₇ = R₆R₇/(R₆+R₇) = 100 · 50 : 150 = 33 1/3 (Ом)
Резистор R₅ с группой R₆₇ соединен последовательно:
R₅₆₇ = R₅ + R₆₇ = 160 + 33 1/3 = 193 1/3 (Ом)
Резисторы R₃ и R₄ соединены последовательно:
R₃₄ = R₃ + R₄ = 100 + 160 = 260 (Ом)
Группа R₃₄ с группой R₅₆₇ соединена параллельно:
R₃₄₅₆₇ = R₃₄R₅₆₇/(R₃₄+R₅₆₇) = 260 · 193 1/3 : 453 1/3 ≈ 111 (Ом)
Резистор R₂ с группой R₃₄₅₆₇ соединен последовательно:
R₂₃₄₅₆₇ = R₂ + R₃₄₅₆₇ = 90 + 111 = 201 (Ом)
Резистор R₁ с группой R₂₃₄₅₆₇ соединен параллельно:
R = R₁R₂₃₄₅₆₇/(R₁+R₂₃₄₅₆₇) = 30 · 201 : 231 ≈ 26,1 (Ом)
В 1862 году Ж. Б. Л. Фуко реализовал высказанную в 1838 году идею Д. Арго, применив вместо зубчатого диска быстровращающееся зеркало (512 оборотов в секунду). Отражаясь от зеркала пучок света направлялся на базу и по возвращении вновь попадал на то же зеркало, успевшее повернуться на некоторый малый угол. При базе всего 20 м Фуко нашёл, что скорость света равна 298000 500 км/с. Схемы и основные идеи методов Физо и Фуко были многократно использованы в последующих работах по определению скорости света.Определение скорости света методом вращающегося зеркала (Метод Фуко): S– источник света; R – быстровращающееся зеркало; C – неподвижное вогнутое зеркало, центр которого совпадает с осью вращения R (поэтому свет, отраженный C, всегда попадает обратно на R); M – полупрозрачное зеркало; L– объектив; E – окуляр; RC – точно измеренное расстояние (база). Пунктиром показаны положение R, изменившееся за время прохождения светом пути RC и обратно, и обратный ход пучка лучей через объектив L, который собирает отраженный пучок в точке S’, а не в точке S, как это было бы при неподвижном зеркале R. Скорость света устанавливается, измеряя смещение SS’.Полученное А. Майкельсоном в1926 году значение c = 299796 4 км/с было тогда самым точным и вошло в интернациональные таблицы физических величин.Измерение скорости света в 19 веке сыграли большую роль в физике, дополнительно подтвердив волновую теорию света. Выполненное Фуко в 1850 году сравнение скорости света одной и той же частоты в воздухе и воде показало, что скорость в воде u = c/n(n) в соответствии с предсказанием волновой теории. Была так же установлена связь оптики с теорией электромагнетизма: измеренная скорость света совпала со скоростью электромагнитных волн, вычисленной из отношения электромагнитных и электростатических единиц электрического заряда.В современных измерениях скорости света используется модернизированный метод Физо с заменой зубчатого колеса на интерференционный или какой-либо другой модулятор света, полностью прерывающий или ослабляющий световой пучок. Приемником излучения служит фотоэлемент или фотоэлектрический умножитель. Применение лазера в качестве источника света, УЗ – модулятора со стабилизированной частотой и повышение точности измерения длины базы позволит снизить погрешности измерений и получить значение с = 299792,5 0,15 км/с. Помимо прямых измерения скорости света по времени прохождения известной базы, широко применяются косвенный методы, дающие большую точность.Скорость света в вакууме принять считать 2999792458 1,2 м/с.Как можно более точное измерение величины с чрезвычайно важно не только в общетеоретическом плане и для определения значений других физических величин, но и для практических целей. К ним, в частности. Относится определение расстояний во времени прохождения радио- или световых сигналов в радиолокации, оптической локации, светодальнометрии и др.