М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации

Электрон с зарядом e влетел в магнитное поле со скоростью v перпендикулярно линиям индукции магнитного поля и стал двигаться по окружности радиуса r. какое выражение соответствует модулю вектора индукции магнитного поля? а. mve/r б. mvr/e в. mv/er г. er/mv

👇
Ответ:
Так как   R=m*V/е*B

B= m*V/e*R

ответ B)
4,7(25 оценок)
Открыть все ответы
Ответ:
Гавхарчик
Гавхарчик
30.05.2021

Дано: v = 15*10⁻⁶ м³ ρ = 2700 кг/м³ ρ₁ = 1000 кг/м³ g = 10 н/кг найти: f - ? допустим, что в качестве камня рассматривается гранит с плотностью ρ = 2700 кг/м³ тогда вес камня (сила тяжести, действующая на камень):                                                             p = fт = mg = ρvg = 2700*15*10⁻⁶*10 = 0,405 (h) на камень, погруженный в воду действует выталкивающая сила, численно равная весу воды в объеме камня:                                 fa = ρ₁gv = 1000*10*15*10⁻⁶ = 0,15 (h) сила, которую надо приложить к камню, чтобы удержать его в воде:                                                             f = p - fa = 0,405 - 0,15 = 0,255 (h) ответ: 0,255 н.

Объяснение:

Под средней длиной свободного пробега понимают среднее расстояние, которое проходит молекула между двумя последовательными соударениями. за секунду молекула в среднем проходит расстояние, численно равное ее средней скорости  . если за это же время она испытает в среднем    столкновений с другими молекулами, то ее средняя длина свободного пробега    , очевидно, будет равна (3.1.1) предположим, что все молекулы, кроме рассматриваемой, неподвижны. молекулы будем считать шарами с диаметром d. столкновения будут происходить всякий раз, когда центр неподвижной молекулы окажется на расстоянии меньшем или равном d от прямой, вдоль которой двигается центр рассматриваемой молекулы. при столкновениях молекула изменяет направление своего движения и затем движется прямолинейно до следующего столкновения. поэтому центр движущейся молекулы ввиду столкновений движется по ломаной линии (рис. 1). рис. 1 молекула столкнется со всеми неподвижными молекулами, центры которых находятся в пределах ломаного цилиндра диаметром 2d. за секунду молекула проходит путь, равный    . поэтому число происходящих за это время столкновений равно числу молекул, центры которых внутрь ломаного цилиндра, имеющего суммарную длину    и радиус d. его объем примем равным объему соответствующего спрямленного цилиндра, т. е. равным    если в единице объема газа находится n молекул, то число столкновений рассматриваемой молекулы за одну секунду будет равно (3.1.2) в действительности движутся все молекулы. поэтому число столкновений за одну секунду будет несколько большим полученной величины, так как вследствие движения окружающих молекул рассматриваемая молекула испытала бы некоторое число соударений даже в том случае, если бы она сама оставалась неподвижной. предположение о неподвижности всех молекул, с которыми сталкивается рассматриваемая молекула, будет снято, если в формулу (3.1.2) вместо средней скорости  представить среднюю скорость относительного движения    рассматриваемой молекулы. в самом деле, если налетающая молекула движется со средней относительной скоростью    , то молекула, с которой она сталкивается, оказывается покоящейся, что и предполагалось при получении формулы (3.1.2). поэтому формулу (3.1.2) следует написать в виде: (3.1.3) предположим, что скорости молекул до столкновения были    и    тогда    из треугольника скоростей имеем (рис. 2) (3.1.4) так как углы    и скорости    и    , с которыми сталкиваются молекулы, очевидно, являются независимыми случайными величинами, то среднее рис. 2 от произведения этих величин равно произведению их средних. поэтому (3.1.5) с учетом последнего равенства формулу (3.1.4) можно переписать в виде: (3.1.6) так как    cредняя квадратичная скорость пропорциональна средней скорости, (3.1.7) т. е.    .поэтому соотношение (3.1.6) можно представить так: (3.1.8) с учетом последнего выражения формула для средней длины свободного пробега приобретает вид: (3.1.9) для идеального газа    . поэтому (3.1.10) отсюда видно, что при изотермическом расширении (сжатии) средняя длина свободного пробега растет (убывает).как было отмечено во введении, эффективный диаметр молекул убывает с ростом температуры. поэтому при заданной концентрации молекул средняя длина свободного пробега увеличивается с ростом температуры. вычисление средней длины свободного пробега для азота (d = 3•10-10  м), находящегося при нормальных условиях (р = 1,01•105  па, т = 273,15 к) дает:   , а для числа столкновений за одну секунду:     . таким образом, средняя длина свободного пробега молекул при нормальных условиях составляет доли микрон, а число столкновений – несколько миллиардов в секунду. поэтому процессы выравнивания температур (теплопроводность), скоростей движения слоев газа (вязкое трение) и концентраций (диффузия) являются достаточно медленными, что подтверждается опытом.

4,7(34 оценок)
Ответ:
gcgccg
gcgccg
30.05.2021
Сломался вагон, колеса заменить нужно. На рельсах возле депо стояла пара колес. Подошел рабочий, навалился на них, а они не едут, еще навалился, а они опять не едут. Кое-как сдвинулись с места ленивые, катятся. Вот пора бы и остановиться, а они дальше едут. Рабочий держит их что есть силы, а они не останавливаются.
Еле-еле встали упрямые!
Не одни колеса на свете ленивые и упрямые.
Положила Иришка на асфальт два шарика —один тяжелый, а другой легкий. Толкнула тяжелый шарик, наскочил он на легкий, но даже этого не заметил, катится дальше. А потом наоборот, толкнула Иришка легкий шарик. Наскочил легкий шарик на тяжелый, да где ему с такой тяжестью и ленью справиться! Сам отскочил в сторону. Значит, тяжелые предметы
«ленивее» легких.

Ехали дети в автобусе, на заднем сиденье. Пассажиров было мало. Рядом с детьми, на полу автобуса, лежал мяч. Вдруг на перекрестке зажегся красный свет. Нажал шофер на тормоз — стал автобус останавливаться, а мяч дальше катится, не хочет останавливаться. Через весь автобус прокатился, остановился только у кабины водителя. Постоял автобус на перекрестке и поехал дальше. А мяч-то ленивый и не хочет никуда ехать. Автобус поехал вперед, а мяч покатился назад к детям. Правильнее было бы сказать, что мяч никуда не покатился. Он остался на месте, а дети вместе с автобусом подъехали к нему.

Предметы не виноваты, что они ленивые и упрямые. И чтобы их не обижать, физики вместо слов «лень» и «упрямство» говорят «инерция» . Инерция есть у всех предметов.
Ехал Леня на роликовых коньках по тротуару, разогнался, а на тротуаре маленькая ямка была. Коньки остановились, а сам Леня вперед по инерции едет, да не едет, а прямо летит, руки
вперед выставил, чтобы носом об асфальт не удариться. Встал Леня, а на лбу шишка. И все из-за инерции!
Наверное, и ты встречалась с инерцией. Вспомни, бежишь и вдруг ноги за что-нибудь запнулись, остановились, а ты вперед летишь по инерции, пока не упадешь на землю. Бывает и наоборот, стоит автобус на месте, а потом резко трогается. Автобус уже поехал, а пассажиры еще сидят неподвижно, и от этого все откидываются назад.
4,8(95 оценок)
Это интересно:
Новые ответы от MOGZ: Физика
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ