1. Преломление света на границе двух сред нашло широкое практическое воплощение в оптических устройствах, которые называются линзами. Все они построены так, что могут изменять конфигурацию световых пучков и направление распространения световых лучей, в частности собирать в точку (собирающие линзы) или делать их рассеивающими (рассеивающие линзы). Благодаря этому можно получить изображения предметов на экране или в глазу человека.
Для построения изображений при линз учитывают характерные точки и линии этих оптических устройств, а также особенности прохождения световых лучей сквозь них. Прямую, которая соединяет центры сферических поверхностей, которые ограничивают линзу, называют главной оптической осью линзы. На ней находится фокус линзы, то есть точка, в которой сходятся световые лучи, параллельные главной оптической оси, или продолжения лучей расходящихся пучков в рассеивающих линзах (рис. 1). Рассеивающие линзы имеют мнимый фокус, поэтому они не образуют изображений на экране. Полученное с их изображение является результатом действия расходящихся лучей от рассеивающей линзы на хрусталик глаза, благодаря чему образуется своеобразная оптическая система, которая создает изображение предмета в глазу.
Для построения изображения любого предмета как правило пользуются двумя-тремя лучами, выходящих из произвольной точки тела и направленных в определенных характерных для линзы направлениях. Один из таких лучей, направленный параллельно главной оптической оси; после преломления он пересекает ось в фокусе линзы (рис. 2). Второй луч, проходящий через фокус, после преломления в линзе становится параллельным главной оптической оси. Третьим лучом можно выбрать тот, что проходит через оптический центр линзы и не преломляется. Все они пересекутся в точке S', которая воспроизводит изображение выбранного участка тела. Существуют определенные правила построения изображений, полученных с линз, когда предмет занимает различные положения относительно нее. 1. Предмет находится между фокусом и двойным фокусом линзы (рис. 3). Направляем два характерных луча (один - параллельный главной оптической оси, второй - через фокус) и получаем изображение предмета, которое находится справа от линзы за двойным фокусом. Оно является действительным, обратным и увеличенным. 2. Предмет находится в двойном фокусе линзы (рис. 3). Направляем те самые два характерных луча - параллельный главной оптической оси и через фокус - и получаем изображение предмета справа от линзы, симметрично к ней, также в точке двойного фокуса. Оно будет действительным, перевернутым и по размеру равен предмету. 3. Предмет находится за двойным фокусом линзы (рис. 4). Направляем на линзу два характерных луча, которые пересекаются в точке, которая находится справа от линзы между фокусом и двойным фокусом. Изображение предмета будет действительным, перевернутым и уменьшенным. 4. Предмет находится перед фокусом линзы (рис. 4). Направляем на линзу два характерных луча - параллельный главной оптической оси и через оптический центр линзы. После преломления эти лучи становятся расходящимися. Поэтому продолжим их до пересечения в точке, которая находится с той же стороны от линзы, что и предмет, - слева. В таком случае получим изображение предмета, которое будет мнимым. прямым и увеличенным. В формулу тонкой линзы входят: фокусное расстояние F, расстояние от предмета к линзе d и расстояние от изображения предмета к линзе f Если F или f мнимые, то в формуле следует записывать их со знаком "-"
2. Оптическая сила линзы: D = = (-1)*() n1 и n2 - показатели преломления относительно среде и материалу линзы ; R1 и R2 - радиусы сферических поверхностей линз.
Тогда собирательная линза может стать рассеивающей, если ее поместить в среду с показателем преломления, большим, чем показатель преломления линзы.
Линейное увеличение линзы: K = H и h - высота относительно предмета и изображения.
новости науки обнаружен новый феномен в теоретической элементарных частиц 01.04.2006 • игорь иванов • наука и общество, , первое апреля •17 комментариев  поскольку ни одной фотографии гордона чалмерса нам найти не удалось, мы публикуем изображение его тезки — преподавателя культуры доктора гордона чалмерса из западного вашингтонского университета. не исключено, что оба чалмерса чем-то похожи в теоретической элементарных частиц наступил переломный момент: появилась новая парадигма, которая дает ответы на нерешенные вопросы и на порядки лучше описывает реальность, чем ортодоксальная теория. не секрет, что в теоретической элементарных частиц (фэч) назревает кризис.стандартная модель — основа фэч — является неполной теорией, и удовлетвориться лишь ею одной теоретики не могут. долгое время считалось, что ответы на все вопросы будут получены в рамках теории суперструн, но открытия последних лет вдребезги разбилиэти надежды. многие ученые потеряли веру в то, что современная ведет их правильной дорогой, и пытаются применять уже метанаучные аргументы, основанные наантропном принципе. в такой ситуации настоящим шагом вперед может быть лишь коренной пересмотр научной парадигмы и выработка совершенно нового подхода к теоретической . например, пять лет назад ученый мир был потрясен совершенно новым подходом к , предложенным стивеном вольфрамом (см. подробнее заметку я наткнулся на трещину, проходящую через всю современную однако тогда вера в теорию суперструн была велика, и новый подход не получил развития.