Объём кузова грузовой «газели» составляет 8 м3. грузоподъёмность «газели» — 1 т. укажите материалы из таблицы плотности, которыми можно нагрузить «газель» «под завязку» (т. е. полностью заполнить кузов). укажите вещества, которые сможет перевозить «газель», только если их объём не превышает 0,5 м3.
1. соударение между движущимся m₂ и неподвижным μ
Закон сохранения импульса
m₂v₂ + μ*0 = m₂v₂' + μv'
Энергии
m₂v₂²/2 + μ*0²/2 = m₂v₂'²/2 + μv'²/2
Со штрихом - скорости после столкновения
m₂(v₂-v₂') = μv'
m₂(v₂² - v₂'²) = μv'²
m₂(v₂² - v₂'²) = m₂(v₂-v₂')*m₂(v₂-v₂')/μ
μ(v₂ + v₂') = m₂(v₂-v₂')
μv₂ + μv₂' = m₂v₂ - m₂v₂'
(μ+m₂)v₂'=(m₂-μ)v₂
v₂'=v₂(m₂-μ)/(μ+m₂)
m₂(v₂-v₂(m₂-μ)/(μ+m₂)) = μv'
m₂v₂(1-(m₂-μ)/(μ+m₂)) = μv'
m₂v₂(μ+m₂-m₂+μ))/(μ+m₂) = μv'
2m₂v₂μ/(μ+m₂) = μv'
2m₂v₂/(μ+m₂) = v'
v' = v₂ * 2m₂/(μ+m₂)
Аналогично и для второго соударения, между движущимся телом μ неподвижным m₁
v₁' = v' * 2μ/(μ+m₁)
v₁' = v₂ * 2m₂/(μ+m₂) * 2μ/(μ+m₁)
Попробуем взять производную по μ и приравнять её к нулю, для поиска максимума скорости
Производная сложной функции
в нашем сучае она равна нулю. Знаменатель всегда положителен, т.к. массы неотрицательны. Остаётся приравнять нулю числитель
(+m₂)μ(μ+m₁)-μ(2μ+m₂+m₁) = 0
μ^2+μ(m₂+m₁)+m₂-2μ^2-μ(m₂+m₁)=0
μ^2 = m₂*m₁
Получается, что для максимальной скорости массы М1 после удара масса среднего тела должна быть средним геометрическим от масс крайних тел
Или в числах
μ = sqrt(2*1) = 1,41 кг