Практическое занятие № 2
Тема. Решение задач по теме "Интерференция в тонких пластинках. Кольца Ньютона".
Цели:
- рассмотреть условия максимума и минимума интерференции в тонких плоскопараллельных и клиновидных пластинках,
- рассмотреть условия получения колец Ньютона, определение радиуса колец.
Ход занятия.
В ходе проведения занятия необходимо рассмотреть ряд качественных задач и далее решить несколько расчетных задач по мере возрастания их сложности.
Перед решением задач необходимо повторить основные условия, при которых наблюдается интерференция: когерентность волн, длина когерентности, условия максимума и минимума интерференции.
Обратите внимание на метод получения когерентных волн в рассматриваемых задачах - метод деления амплитуды.
Несколько задач предлагается с объяснением их решения. В задачах рассмотрено получение полос равного наклона (плоскопараллельная пластинка) и равной толщины (оптический клин и кольца Ньютона). Получены условия максимума и минимума интерференции в проходящем и отраженном свете.
Качественные задачи.
1. Если на влажный асфальт упадет капля бензина, то получившееся пятно в солнечном свете окрашивается в различные цвета. Объясните явление/.
2. Если поверхность оптического стекла покрыть прозрачной пленкой, показатель преломления которой меньше показателя преломления стекла, а толщина пленки равна (λ-длина волны падающего света), то поверхность стекла вовсе не будет отражать свет, то есть весь свет будет проходить через стекло. Объясните смысл такого приема объективов современных оптических приборов.
3. Выдувая мыльный пузырь и наблюдая за ним в отраженном свете, можно заметить на его поверхности радужные цвета. Объясните это явление.
Примеры решения расчетных задач
Задача 1. Пленка с показателем преломления n = 1,5 освещается светом с длиной волны λ=6 ·10-5 см. Световые волны рас по нормали к поверхности пленки. При каких толщинах d пленки интерференционные полосы, наблюдаемые на ее поверхности, исчезают?
Из падающей по нормали на поверхность пленки волны после отражения образуются две когерентные волны 1 и 2 ( рис . 1 ). Оптическая разность хода между ними с учетом потери в точке С равна . Для светлых полос Δ = k λ, то есть .
Минимальная толщина пленки, при которой наблюдаются светлые полосы в отраженном свете на поверхности пленки, соответствует k = 0, следовательно,. Если , полосы исчезают . Таким образом,
м = 10-4 мм.
ответ: м = 10-4 мм.
Объяснение:
Надеюсь это тебе решить задачу
Уравнение Бернулли - уравнение гидродинамики, которое определяет связь между скоростью течения v, давлением p и высотой h определенной точки в идеальной жидкости. Установил его в 1738 году Даниэль Бернулли.
2.3. Пульверизатор
В пульверизаторе применяется главный следствие закона Бернулли: с ростом скорости происходит рост динамического давления и падение статического давления. В капилляры пульверизатора вдувается воздух или пар. Вдувание снижает атмосферное давление в капилляре, и жидкость из пульверизатора под действием большего атмосферного давления поднимается капилляром. Там она раздробляется струей воздуха.
2.4. Водоструйный насос
Водоструйный насос - резервуар, в который впаяны две трубки. Под действием давления в первую трубку протекает вода, попадая затем в другую трубку. В суженной части первой трубки возникает уменьшен давление, меньше атмосферного. Поэтому в резервуаре создается напряжение. Трубку подсоединяют к резервуару, который проходит в сосуд, из которого необходимо откачать воздух.
2.5. Карбюратор
Карбюратор - устройство в системе питания карбюраторных двигателей внутреннего сгорания, который применяется для смешивания бензина и воздуха. При движении поршня в такте впуска давление в цилиндре понижается. При этом окружающий воздух всасывается цилиндром через воздушную трубу карбюратора - диффузор. В узкой части диффузора, где давление соответственно наименьший расположен распылитель, из которого вытекает топливо. Топливо измельчается струей воздуха на маленькие капли и образуется горючая смесь.
...