*ответ*333
Объяснение:
Решение задачи: Вода массой m1 при теплообмене нагреется до некоторой температуры t, а вода массой m2 – остынет до той же температуры. Запишем уравнение теплового баланса: Q1=Q2 Здесь Q1 – количество теплоты, полученное водой массой m1 при теплообмене, а Q2 – количество теплоты, отданное водой массой m2. cm1(t–t1)=cm2(t2–t) m1(t–t1)=m2(t2–t) Раскроем скобки в обеих частях равенства: m1t–m1t1=m2t2–m2t В левую часть перенесем члены с множителем t, а в правую – все оставшиеся. m1t+m2t=m1t1+m2t2 t(m1+m2)=m1t1+m2t2 t=m1t1+m2t2m1+m2 Задача решена в общем виде. Можно подставить значения величин без перевода в систему СИ, тогда ответ мы получим в градусах Цельсия. t=50⋅20+100⋅8050+100=60∘C=333К
*ответ*333
Объяснение:
Решение задачи: Вода массой m1 при теплообмене нагреется до некоторой температуры t, а вода массой m2 – остынет до той же температуры. Запишем уравнение теплового баланса: Q1=Q2 Здесь Q1 – количество теплоты, полученное водой массой m1 при теплообмене, а Q2 – количество теплоты, отданное водой массой m2. cm1(t–t1)=cm2(t2–t) m1(t–t1)=m2(t2–t) Раскроем скобки в обеих частях равенства: m1t–m1t1=m2t2–m2t В левую часть перенесем члены с множителем t, а в правую – все оставшиеся. m1t+m2t=m1t1+m2t2 t(m1+m2)=m1t1+m2t2 t=m1t1+m2t2m1+m2 Задача решена в общем виде. Можно подставить значения величин без перевода в систему СИ, тогда ответ мы получим в градусах Цельсия. t=50⋅20+100⋅8050+100=60∘C=333К
l1=16км=16000м
t2=16мин=960с
l2=34км=34000м
Складываем время t1+t2=1200+960=2160с
Складываем расстояния S1+S2=60000м
Что бы найти среднюю скорость надо общее пройденное расстояние поделить на общее пройденное время. Делим 60000 на 2160=27,7м.с
Средняя скорость
60000/2160=27,7 м/с=16.67м/с..Ну еще можно перевести это в несистемную, но более привычную единицу км/ч(16,6*3600)/(1000)=60 км/ч