Какой должна быть добротность контура q, чтобы частота, при которой наступает резонанс токов, отличалась от частоты, при которой наступает резонанс напряжений, не более чем на 1% ?
Шаг 1. Выясняем резонансные частоты. Колебательный контур описывается линейным дифференциальным уравнением второго порядка: , полученным из уравнения Кирхгофа введением обозначений: , . Для выяснения резонансной частоты возьмем вынуждающую силу, изменяющуюся по закону косинуса. . Решение данного уравнения, согласно теории д.у., имеет вид: , где первое слагаемое - решение с.о.у. (оно затухает и нас не интересует), а второе - произвольное частное решение, которое ищется в указанном виде (в силу особенностей взятой вынуждающей силы). Подставим решение в уравнение и (с например, векторной диаграммы) получим . Зная, что и . Получаем для амплитуды тока и напряжений следующие выражения: и . Таким образом, решая квадратные уравнения в знаменателях, можно понять, что наибольшая амплитуда (резонанс) у напряжения достигается при частоте , а у тока при . Шаг 2. Что такое добротность Как было написано ранее, за затухание собственных колебаний системы отвечает слагаемое . За это время система совершила колебаний, где - собственная частота колебаний системы (следует из решения д.у.). Так вот, величина называется добротностью контура. Шаг 3. Накладываем ограничения
Решая это неравенство получаем: , отсюда Шаг 4. Находим добротность Вообще говоря, и Таким образом, отличие истинного решения от полученного примерно 0.03. ответ:
P.S. Что касается погрешности, то в принципе если повозиться, то, наверное, можно найти результат более точно, но это потребует лишней возни с алгеброй, которую я недолюбливаю.
1. А 2. С 3. 3*1,6*10^-19=4,8*10^-19 Дж (Д) 4. А 5. В 6. В 7. А 8. С 9. Д 10. Е0р = mpc2 mp = 1,6*10-27 кг. c = 3*10^8 м/с E0p=1,6*10^27 кг * (3*10^8 м/c)^2=(1,44 × 10^44)/(1,6*10^-19)=900МеВ (В)
1.В 2.А 3. 1 а.е.м= 0,166*10^-26 кг 2 а.е.м=0,332*10^-27 кг (Д) 4. С 5. А, С 6. С 7. С 8. А 9. Д 10. Дано t1 = 26 лет t2 = 52 года N = 10^9 атомов = 100 * 10^7 атомов определим количество распадов n = t2 / t1 n = 52/26 = 2 то есть вещество испытает 2 полураспад было 100 * 10^7 атомов через 26 лет осталась половина 50 * 10^7 атомов еще через 26 лет осталось 25 * 10^7 атомов Теперь считаем сколько распалось 100 * 10^7 - 25 * 10^7 = 75 * 10^7 атомов =7,5 * 10^8 атомов В последнем задании вроде опечатка в ответах, так что... Скорее всего ответ тут будет (В).
Колебательный контур описывается линейным дифференциальным уравнением второго порядка:
, полученным из уравнения Кирхгофа введением обозначений: , . Для выяснения резонансной частоты возьмем вынуждающую силу, изменяющуюся по закону косинуса. .
Решение данного уравнения, согласно теории д.у., имеет вид:
, где первое слагаемое - решение с.о.у. (оно затухает и нас не интересует), а второе - произвольное частное решение, которое ищется в указанном виде (в силу особенностей взятой вынуждающей силы). Подставим решение в уравнение и (с например, векторной диаграммы) получим .
Зная, что и . Получаем для амплитуды тока и напряжений следующие выражения: и .
Таким образом, решая квадратные уравнения в знаменателях, можно понять, что наибольшая амплитуда (резонанс) у напряжения достигается при частоте , а у тока при .
Шаг 2. Что такое добротность
Как было написано ранее, за затухание собственных колебаний системы отвечает слагаемое . За это время система совершила колебаний, где - собственная частота колебаний системы (следует из решения д.у.). Так вот, величина называется добротностью контура.
Шаг 3. Накладываем ограничения
Решая это неравенство получаем: , отсюда
Шаг 4. Находим добротность
Вообще говоря, и Таким образом, отличие истинного решения от полученного примерно 0.03.
ответ:
P.S. Что касается погрешности, то в принципе если повозиться, то, наверное, можно найти результат более точно, но это потребует лишней возни с алгеброй, которую я недолюбливаю.