Дано:
x1 = d1 = 40 см = 0,4 м
D1 = 5 дптр
x2 = 100 см = 1 м
D2 = 6 дптр
Г, Х - ?
Нам нужно найти расстояние от конечного изображения до предмета. Сначала найдём расстояние от первой линзы до первого изображения по формуле тонкой линзы:
1/d1 + 1/f1 = 1/F1
F1 - это обратная величина D1, тогда:
1/d1 + 1/f1 = 1/(1/D1) = D1
1/f1 = D1 - 1/d1
f1 = 1/(D1 - 1/d1) = 1/(5 - 1/0,4) = 0,4 м
Теперь выясним расстояние от второй линзы до первого изображения. Если линза находится в метре от предмета, а первое изображение - в d1 + f1 = 0,4 + 0,4 = 0,8 м от предмета, то расстояние d2 равно:
d2 = x2 - (d1 + f1) = 1 - 0,8 = 0,2 м
Далее снова используем формулу тонкой линзы, чтобы узнать расстояние от второго изображения до второй линзы:
1/d2 + 1/f2 = D2
1/f2 = D2 - 1/d2
f2 = 1/(D2 - 1/d2) = 1/(6 - 1/0,2) = 1 м
Значит расстояние от конечного изображения до предмета равно:
Х = х2 + f2 = 1 + 1 = 2 м
Поперечное увеличение, даваемое системой линз, равно линейному увеличению второй линзы, т.к. первая линза не увеличивает изображение предмета из-за того, что предмет расположен на двойном фокусном расстоянии от неё:
Г = H/h = f2/d2 = 1/0,2 = 5
ответ: 2 м, 5.
Звук быстрее чем волна
Объяснение:
Данный урок освещает тему «Звуковые волны». На этом уроке мы продолжим изучать акустику. Вначале повторим определение звуковых волн, затем рассмотрим их частотные диапазоны и познакомимся с понятием ультразвуковых и инфразвуковых волн. Мы также обсудим свойства, присущие звуковым волнам в различных средах, и узнаем, какие им присущи характеристики.
Звуковая волна
Звуковые волны – это механические колебания, которые, распространяясь и взаимодействуя с органом слуха, воспринимаются человеком (рис. 1).
Рис. 1. Звуковая волна
Раздел, который занимается в физике этими волнами, называется акустика. Профессия людей, которых в простонародье называют «слухачами», – акустики. Звуковая волна – это волна, распространяющаяся в упругой среде, это продольная волна, и, когда она распространяется в упругой среде, чередуются сжатие и разряжение. Передается она с течением времени на расстояние (рис. 2).
Рис. 2. Распространение звуковой волны
К звуковым волнам относятся такие колебания, которые осуществляются с частотой от 20 до 20 000 Гц. Для этих частот соответствуют длины волн 17 м (для 20 Гц) и 17 мм (для 20 000 Гц). Этот диапазон будет называться слышимым звуком. Эти длины волн приведены для воздуха, скорость распространения звука в котором равна .
Существуют еще такие диапазоны, которыми занимаются акустики, – инфразвуковые и ультразвуковые. Инфразвуковые – это те, которые имеют частоту меньше 20 Гц. А ультразвуковые – это те, которые имеют частоту больше 20 000 Гц (рис. 3).
Рис. 3. Диапазоны звуковых волн
Каждый образованный человек должен ориентироваться в диапазоне частот звуковых волн и знать, что если он пойдет на УЗИ, то картинка на экране компьютера будет строиться с частотой больше 20 000 Гц.
Ультра- и инфразвук
Ультразвук – это механические волны, аналогичные звуковым, но имеющие частоту от 20 кГц до миллиарда герц.
Волны, имеющие частоту более миллиарда герц, называют гиперзвуком.
Ультразвук применяется для обнаружения дефектов в литых деталях. На исследуемую деталь направляют поток коротких ультразвуковых сигналов. В тех местах, где дефектов нет, сигналы проходят сквозь деталь, не регистрируясь приемником.
Если же в детали есть трещина, воздушная полость или другая неоднородность, то ультразвуковой сигнал отражается от нее и, возвращаясь, попадает в приемник. Такой метод называют ультразвуковой дефектоскопией.
Другими примерами применения ультразвука являются аппараты ультразвукового исследования, аппараты УЗИ, ультразвуковая терапия.
Инфразвук – механические волны, аналогичные звуковым, но имеющие частоту менее 20 Гц. Они не воспринимаются человеческим ухом.
Естественными источниками инфразвуковых волн являются шторм, цунами, землетрясения, ураганы, извержения вулканов, гроза.
Инфразвук – тоже важные волны, которые используют для колебаний поверхности (например, чтобы разрушить какие-нибудь большие объекты). Мы запускаем инфразвук в почву – и почва дробится. Где такое используется? Например, на алмазных приисках, где берут руду, в которых есть алмазные компоненты, и дробят на мелкие частицы, чтобы найти эти алмазные вкрапления (рис. 4).
Рис. 4. Применение инфразвука
Скорость распространения звуковой волны
Скорость звука зависит от условий среды и температуры (рис. 5).
Рис. 5. Скорость распространения звуковой волны в различных средах
Обратите внимание: в воздухе скорость звука при равна , при скорость увеличивается на . Если вы исследователь, то вам могут пригодиться такие знания. Вы, может быть, даже придумаете какой-нибудь температурный датчик, который будет фиксировать расхождения температуры путем изменения скорости звука в среде. Мы уже знаем, что чем плотнее среда, чем более серьезное взаимодействие между частицами среды, тем быстрее распространяется волна. Мы в параграфе обсудили это на примере сухого и воздуха влажного воздуха. Для воды скорость распространения звука . Если создать звуковую волну (стучать по камертону), то скорость ее распространения в воде будет в 4 раза больше, чем в воздухе. По воде информация дойдет быстрее в 4 раза, чем по воздуху. А в стали и того быстрее: (рис. 6).
Рис. 6. Скорость распространения звуковой волны
Вы знаете из былин, что Илья Муромец пользовался (да и все богатыри и обычные русские люди и мальчики из РВС Гайдара), пользовались очень интересным обнаружения объекта, который приближается, но располагается еще далеко. Звук, который он издает при движении, еще не слышен. Илья Муромец, припав ухом к земле, может ее услышать. Почему? Потому что по твердой земле передается звук с большей скоростью, значит, быстрее дойдет до уха Ильи Муромца, и он сможет подготовиться к встрече неприятеля.
F=B*i*l
чтобы число силовых линий возросло в 4 раза, 4 раза нужно увеличить силу электрического тока в витке,