Фаза колебаний начальная — значение фазы колебаний (полной) в начальный момент времени, т.е. при t = 0 (для колебательного процесса), а также в начальный момент времени в начале системы координат, т.е. при t = 0 в точке (x, y, z) = 0 (для волнового процесса).
Фаза колебания (в электротехнике) — аргумент синусоидальной функции (напряжения, тока), отсчитываемый от точки перехода значения через нуль к положительному значению
Как правило, о фазе говорят применительно к гармоническим колебаниям или монохроматическим волнам. При описании величины, испытывающей гармонические колебания, используется, например, одно из выражений
Аналогично, при описании волны, распространяющейся в одномерном пространстве, например, используются выражения вида
для волны в пространстве любой размерности (например, в трехмерном пространстве)
Фаза колебаний (полная) в этих выражениях — аргумент функции, т.е. выражение, записанное в скобках; фаза колебаний начальная — величина φ0, являющаяся одним из слагаемых полной фазы. Говоря о полной фазе, слово полнаячасто опускают.
Поскольку функции sin(…) и cos(…) совпадают друг с другом при сдвигеаргумента (то есть фазы) на то во избежание путаницы лучше пользоваться для определения фазы только одной из этих двух функций, а не той и другой одновременно. По обычному соглашению фазой считают аргумент косинуса.
То есть, для колебательного процесса (см. выше) фаза (полная) для волны в одномерном пространстве для волны в трехмерном пространстве или пространстве любой другой размерности:
,
где — угловая частота (величина, показывающая, на сколько радиан или градусов изменится фаза за 1 с; чем величина выше, тем быстрее растет фаза с течением времени); t— время; — начальная фаза (то есть фаза при t = 0); k— волновое число; x — координата точки наблюдения волнового процесса в одномерном пространстве; k — волновой вектор; r — радиус-вектор точки в пространстве (набор координат, например,декартовых).
В приведенных выше выражениях фаза имеет размерность угловых единиц (радианы, градусы). Фазу колебательного процесса по аналогии с механическим вращательным также выражают в циклах, то есть долях периода повторяющегося процесса:
1 цикл = 2 радиан = 360 градусов.
В аналитических выражениях (в формулах) преимущественно (и по умолчанию) используется представление фазы в радианах, представление в градусах также встречается достаточно часто (по-видимому, как предельно явное и не приводящее к путанице, поскольку знак градуса не принято никогда опускать ни в устной речи, ни в записях). Указание фазы в циклах или периодах (за исключением словесных формулировок) в технике сравнительно редко.
Иногда (в квазиклассическом приближении, где используются квазимонохроматические волны, т.е. близкие к монохроматическим, но не строго монохроматические) а также в формализме интеграла по траекториям, где волны могут быть и далекими от монохроматических, хотя всё же подобны монохроматическим) рассматривается фаза, являющаяся нелинейной функцией времени t и пространственных координатr, в принципе — произвольная функция
Так как вес игрушки в воде в 5 раз меньше ее веса в воздухе, то: P₀ = 5P₁ Вес игрушки в воде складывается из: P₁ = P₀ - Fa = P₀ - ρVg, где: ρ = 1000 кг/м³ - плотность воды V = m/ρ₀ - объем игрушки ρ₀ - плотность игрушки Тогда: P₀/5 = P₀ - ρVg P₀ = 5P₀ - 5ρVg 5ρVg = 4P₀ => V = 4P₀/5ρg = 4mg/5ρg = 4m/5ρ m/ρ₀ = 4m/5ρ ρ₀ = 5ρm/4m = 1,25ρ = 1250 (кг/м³)
Проверим: Предположим, что объем игрушки 1 дм³ = 10⁻³ м³ Тогда масса игрушки: m = ρV = 1250*10⁻³ = 1,25 (кг) На игрушку в воде действует выталкивающая сила, равная весу воды в объеме игрушки: Fa = ρVg = 1000*10⁻³*10 = 10 (H) Вес игрушки в воздухе: P₀ = mg = 12,5 (Н) Вес игрушки в воде: P₁ = P₀ - Fa = 12,5 - 10 = 2,5 (Н) Тогда отношение P₀/P₁ = 12,5/2,5 = 5