На первом участке (от 0 до 3 секунд) тело движется равноускоренно с постоянным ускорением а₁ = 4/3 м/с²
Расстояние, пройденное телом на участке 1:
S₁ = v₀₁t₁ + a₁t₁²/2 = (0 · 3) + ((4/3) · 9 : 2) = 6 (м)
На втором участке (от 3 до 9 секунд) тело движется равномерно со скоростью v = 4 м/с.
Расстояние, пройденное телом на участке 2:
S₂ = vt = 4 · 6 = 24 (м)
На третьем участке (от 9 до 11 секунд) тело движется равнозамедленно с постоянным ускорением а₃ = - 4/2 = -2 м/с²
Расстояние, пройденное телом на участке 3:
S₃ = v₀₃t₃ + a₃t₃²/2 = (4 · 2) - (2 · 4 : 2) = 8 - 4 = 4 (м)
Средняя скорость движения тела, по определению, равна отношению всего пройденного пути ко всему времени движения:
v(cp) = (S₁+S₂+S₃)/t = (6 + 24 + 4) : 11 = 34 : 11 ≈ 3,1 (м/с)
Дано:
m=2 кг, Eк1=400 Дж, υ=10 м/с, h−?
Решение задачи:
Схема к решению задачиПри отсутствии неконсервативных сил, действующих на камень, например, силы сопротивления воздуха, полная механическая энергия камня сохраняется согласно закону сохранения энергии.
E=const
Возьмем нуль отсчета потенциальной энергии на уровне точки броска камня. Тогда понятно, что в точке 1 (смотрите схему) у камня имеется только кинетическая энергия Eк1, а в точке 2 – и кинетическая Eк2, и потенциальная Eп2.
Eк1=Eк2+Eп2
Потенциальная и кинетическая энергии в точке 2 находятся по известным формулам, поэтому:
Eк1=mυ22+mgh
Выразим из этого уравнения неизвестную высоту h:
h=2Eк1–mυ22mg
Так как все исходные данные задачи даны в системе СИ, то можно сразу посчитать ответ:
h=2⋅400–2⋅1022⋅2⋅10=15м
ответ: 15 м.
Источник: https://easyfizika.ru/zadachi/dinamika/kamen-massoj-2-kg-broshen-vertikalno-vverh-ego-nachalnaya-kineticheskaya-energiya
Объяснение:
движение равнопеременное
координата y=V0t-gt^2/2
y=15*2-10*4/2=10м