Объяснение:
Электродина́мика — раздел физики, изучающий электромагнитное поле в наиболее общем случае (то есть, рассматриваются переменные поля, зависящие от времени) и его взаимодействие с телами, имеющими электрический заряд (электромагнитное взаимодействие)[1]. Предмет электродинамики включает связь электрических и магнитных явлений, электромагнитное излучение (в разных условиях, как свободное, так и в разнообразных случаях взаимодействия с веществом), электрический ток (вообще говоря, переменный) и его взаимодействие с электромагнитным полем (электрический ток может быть рассмотрен при этом как совокупность движущихся заряженных частиц). Любое электрическое и магнитное взаимодействие между заряженными телами рассматривается в современной физике как осуществляющееся посредством электромагнитного поля, и, следовательно, также является предметом электродинамики.
Чаще всего под термином электродинамика по умолчанию понимается классическая электродинамика, описывающая только непрерывные свойства электромагнитного поля посредством системы уравнений Максвелла; для обозначения современной квантовой теории электромагнитного поля и его взаимодействия с заряженными частицами обычно используется устойчивый термин квантовая электродинамика. Термин «электродинамика» ввёл Андре-Мари Ампер, опубликовавший в 1823 году работу «Конспект теории электродинамических явлений».
Явление инерции
Из практики реальной жизни мы знаем, что тело не может изменить свою скорость самостоятельно. В IV веке Аристотель писал о том, что все движущееся движимо чем-то. Авторитет Аристотеля был очень велик, и только спустя 2 тысячи лет Галилей показал, что если на тело не оказывают воздействие другие тела, то оно находится в покое или может двигаться равномерно и прямолинейно. При этом такое движение происходит бесконечно долго. Чем меньше действие других тел, тем меньше изменяется скорость перемещения тела, тем ближе движение к равномерному.
Определение инерции
Явлением инерции называют явление, при котором скорость тела остается неизменной, если на него не действуют другие тела или их действие взаимно компенсируются. Inertia — от латинского бездеятельность, косность.
Явление инерции становится очевидным тогда, когда изменяется величина или направление скорости движения. Так, при уменьшении скорости движения автомобиля, особенно, если это происходит резко, водитель и пассажиры отклоняются вперед, продолжая движение. Если резко затормозить при езде на велосипеде, то можно перелететь через его руль вперед.
Если любое тело вывести из состояния покоя, то после прекращения воздействия на него, оно будет двигаться по инерции.
Движение тела, если равнодействующая сил, приложенных к нему равна нулю, называют движением по инерции.
Так, пуля, вылетевшая из дула пистолета двигалась бы бесконечно долго с постоянной скоростью, если бы на нее не действовал воздух, создавая силу трения. По инерции движется ракета, удаленная от всех небесных тел после того как у нее выключили двигатели.
Закон инерции
Выводы Галилея были обобщены И. Ньютоном, который сформулировал закон инерции (или первый закон Ньютона):
Каждое тело находится в состоянии покоя или движется равномерно и прямолинейно, относительно любой инерциальной системы отсчета, до того момента пока действие на него других тел не заставит его изменить свое состояние.
Закон инерции является важным и независимым законом. Он отображает возможность определить пригодность системы отсчета для рассмотрения движения в динамическом и кинематическом смыслах. Он стал первым шагом при установлении основных законов классической механики.
Тре́ние — процесс механического взаимодействия соприкасающихся тел при их относительном смещении в плоскости касания (внешнее трение) либо при относительном смещении параллельных слоёв жидкости, газа или деформируемого твёрдого тела (внутреннее трение, или вязкость). Далее в этой статье под трением понимается лишь внешнее трение. Изучением процессов трения занимается раздел физики, который называется механикой фрикционного взаимодействия, или трибологией.
Трение главным образом имеет электронную природу при условии, что вещество находится в нормальном состоянии. В сверхпроводящем состоянии вдалеке от критической температуры основным «источником» трения являются фононы, а коэффициент трения может уменьшиться в несколько раз
Оптика. Вариант №1.
Геометрическая оптика.
Угол падения.
Явление отражения света.
Линза, их виды.
Построить изображение в собирающей линзе (d =2F).
Фокус линзы.
Формула увеличения линзы.
Интерференция света.
Дифракция света.
Поперечность световых волн.
Формула относительности расстояния.
Формула Эйнштейна.
Фотолюминесценция.
Спектральный анализ.
Оптика. Вариант №2.
Волновая оптика.
Угол отражения.
Явление преломления.
Предельный угол полного отражения.
Построить изображение в рассеивающей линзе.
Фокусное расстояние.
Формула увеличения микроскопа.
Условие максимума интерференции.
Теория Френеля.
Принцип относительности – постулат теории Эйнштейна.
Формула относительности промежутков времени.
Энергия покоя.
Спектральные аппараты.
Инфракрасное излучение.
Оптика. Вариант №3.
Корпускулярная теория света.
Угол преломления.
Показатель преломления.
Закон полного отражения света.
Построить изображение в собирающей линзе (d<F).
Формула тонкой линзы.
Почему трава зелёная?
Условие минимума интерференции.
Дифракционная решётка.
Относительность одновременности.
Релятивистский закон сложения скоростей.
Электролюминесценция.
Непрерывный спектр.
Рентгеновские лучи.
Оптика. Вариант №4.
Волновая теория света.
Закон отражения света.
Полное отражение.
Построить изображение предмета в собирающей линзе (d>2F).
Оптическая сила (формула, единицы измерения).
Дифракция света.
Длина волны фиолетового цвета.
Применение интерференции.
Период дифракционной решётки.
Формула замедления времени.
Принцип соответствия.
Хемиолюминесценция.
Полосатые спектры.
Назначение лупы.
Оптика. Вариант №5.
Принцип Гюйгенса.
Изображение в плоском зеркале.
Закон преломления света.
Построить изображение предмета в собирающей линзе (F<d<2F).
Увеличение линзы.
Формула увеличения телескопа.
Длина волны красного цвета.
Когерентные волны.
Условие максимума дифракции.
2 постулат теории относительности Эйнштейна.
Формула зависимости массы от скорости.
Тепловое излучение.
Линейчатые спектры.
Ультразвуковое излучение.
Объяснение:
Наверно так
S=1,5*0,1*2=0,3
F=m*g
P=450/0,3=1500
Для того чтобы найти без лыж нужно знатт площадь ботинка или стопы