Ускорение свободного падения, можно определить используя гравитационную постоянную. F=G*m1*m2/(R+h)^2 Исходя из второго закона Ньютона F=mg=ma, а в инерциальных системах отсчёта ускорение, приобретаемое материальной точкой, прямо пропорционально вызывающей его силе, совпадает с ней по направлению и обратно пропорционально массе материальной точки.
Ну можно предположить так g0 = 9,8 м/с² − ускорение свободного падения у поверхности Земли R = 6400 км − радиус Земли g = 1 м/с² − ускорение свободного падения на высоте H над Землёю
H − ? высота
Ускорение свободного падения (напряжённость гравитационного поля Земли) определяется из закона всемирного тяготения:
{g0 = G•M/R² {g = G•M/(R + H)²
где G − гравитационная постоянная, M − масса Земли Выразим из уравнений G•M:
G•M = g•(R + H)² = g0•R²
Мы получили выражение теоремы Остроградского-Гаусса: ускорение свободного падения обратно пропорционально квадрату расстояния до центра Земли. Решим уравнение относительно высоты H:
(R + H)/R = 1 + H/R = √(g0/g) H = R•[√(g0/g) − 1]
Подставим численные значения:
H = 6400•[√(9,8/1) − 1] = 13640 км
ответ: H = 13640 км ну это же элементарно чего тут не знать (не сочтите за грубость )
g0 = 9,8 м/с² − ускорение свободного падения у поверхности Земли R = 6400 км − радиус Земли g = 1 м/с² − ускорение свободного падения на высоте H над Землёю
H − ? высота
Ускорение свободного падения (напряжённость гравитационного поля Земли) определяется из закона всемирного тяготения:
{g0 = G•M/R² {g = G•M/(R + H)²
где G − гравитационная постоянная, M − масса Земли Выразим из уравнений G•M:
G•M = g•(R + H)² = g0•R²
Мы получили выражение теоремы Остроградского-Гаусса: ускорение свободного падения обратно пропорционально квадрату расстояния до центра Земли. Решим уравнение относительно высоты H:
Исходя из второго закона Ньютона F=mg=ma, а в инерциальных системах отсчёта ускорение, приобретаемое материальной точкой, прямо пропорционально вызывающей его силе, совпадает с ней по направлению и обратно пропорционально массе материальной точки.